Skip to main content
Log in

Quasi-Regression Monte-Carlo Scheme for Semi-Linear PDEs and BSDEs with Large Scale Parallelization on GPUs

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

In this article we design a novel quasi-regression Monte Carlo algorithm in order to approximate the solution of discrete time backward stochastic differential equations, and we analyze the convergence of the proposed method. The algorithm also approximates the solution to the related semi-linear parabolic partial differential equation obtained through the well known Feynman–Kac representation. For the sake of enriching the algorithm with high order convergence a weighted approximation of the solution is computed and appropriate conditions on the parameters of the method are inferred. With the challenge of tackling problems in high dimensions we propose suitable projections of the solution and efficient parallelizations of the algorithm taking advantage of powerful many core processors such as graphics processing units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Fully coupled FBSDEs have the general form

    $$\begin{aligned} {\mathrm{d}}X_t&= b(t,X_t,Y_t,Z_t) {\mathrm{d}}t + \sigma (t,X_t,Y_t,Z_t) \mathrm{d}W_t, \quad X_0 = x_0, \\ -{\mathrm{d}}Y_t&= f(t,X_t,Y_t,Z_t) {\mathrm{d}}t - Z_t {\mathrm{d}}W_t, \quad Y_T = g(X_T). \end{aligned}$$
  2. Single precision data type is assumed.

References

  1. Bally V (1997) Approximation scheme for solutions of BSDE. In: Backward stochastic differential equations (Paris, 1995–1996), Pitman research notes in mmathematics series, vol 364, pp 177–191. Longman, Harlow

  2. Bally V, Pagès G (2003) A quantization algorithm for solving multi-dimensional optimal stopping problems. Bernoulli 9(6):1003–1049

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles G, Buckdahn R, Pardoux E (1997) Backward stochastic differential equations and integral-partial differential equations. Stoch Stoch Rep 60(1–2):57–83

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellmann R (1961) Adaptive control processes: a guided tour. Princeton University Press, Princeton

    Book  Google Scholar 

  5. Bender C, Denk R (2007) A forward scheme for backward SDEs. Stoch Process Appl 117(12):1793–1823

    Article  MathSciNet  MATH  Google Scholar 

  6. Bender C, Moseler T (2010) Importance sampling for backward SDEs. Stoch Anal Appl 28(2):226–253

    Article  MathSciNet  MATH  Google Scholar 

  7. Bergman Y (1995) Option pricing with differential interest rates. Rev Financ Stud 8(2):475–500

    Article  Google Scholar 

  8. Bismut JM (1973) Conjugate convex functions in optimal stochastic control. J Math Anal Appl 44(2):384–404

    Article  MathSciNet  MATH  Google Scholar 

  9. Bouchard B, Tan X, Warin X, Zou Y (2017) Numerical approximation of BSDEs using local polynomial drivers and branching processes. Monte Carlo Methods Appl 23(4):241–263

    Article  MathSciNet  MATH  Google Scholar 

  10. Bouchard B, Touzi N (2004) Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch Process Appl 111:175–206

    Article  MathSciNet  MATH  Google Scholar 

  11. Canuto C, Hussaini MY, Quarteroni A, Zang TA (2006) Spectral methods fundamentals in single domains. Springer, Berlin

    Book  MATH  Google Scholar 

  12. Chan-Wai-Nam Q, Mikael J, Warin X (2019) Machine learning for semi linear PDEs. J Sci Comput. https://doi.org/10.1007/s10915-019-00908-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Cheridito P, Soner HM, Touzi N, Victoir N (2007) Second-order backward stochastic differential equations and fully nonlinear parabolic PDEs. Commun Pure Appl Math 60(7):1081–1110

    Article  MathSciNet  MATH  Google Scholar 

  14. Chevance D (1997) Numerical methods for backward stochastic differential equations. In: Moffatt HK (ed) Numerical methods in finance. Cambridge University Press, Cambridge, pp 232–244

    Chapter  MATH  Google Scholar 

  15. Constantine GM, Savits TH (1996) A multivariate Faa di Bruno formula with applications. Trans Am Math Soc 348(2):503–520

    Article  MathSciNet  MATH  Google Scholar 

  16. Crepey S (2013) Financial modeling: a backward stochastic differential equations perspective. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Cvitanic J, Ma J (1996) Hedging options for a large investor and Forward-Backward SDEs. Ann Appl Probab 6(2):370–398

    Article  MathSciNet  MATH  Google Scholar 

  18. Delarue F, Menozzi S (2006) A forward backward algorithm for quasi-linear PDEs. Ann Appl Probab 16(1):140–184

    Article  MathSciNet  MATH  Google Scholar 

  19. Delarue F, Menozzi S (2008) An interpolated stochastic algorithm for quasi-linear PDEs. Math Comput 77(261):125–158

    Article  MathSciNet  MATH  Google Scholar 

  20. Delong L (2013) Backward stochastic differential equations with jumpsand their actuarial and financial applications: BSDEs with jumps. Springer, Berlin

    Book  MATH  Google Scholar 

  21. Di Pietro D, Ern A (2011) Mathematical aspects of discontinuous Galerkin methods, vol 69. Springer, Berlin

    MATH  Google Scholar 

  22. Duffie D, Epstein L (1992) Stochastic differential utility. Econometrica 60(2):353–394

    Article  MathSciNet  MATH  Google Scholar 

  23. E W, Han J, Jentzen A (2017) Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun Math Stat 5(4):349–380

    Article  MathSciNet  MATH  Google Scholar 

  24. El Karoui N, Hamadène S, Matoussi A (2008) Backward stochastic differential equations and applications. In: Carmona R (ed) Indifference pricing: theory and applications, vol 8. Springer, Berlin, pp 267–320

    Chapter  MATH  Google Scholar 

  25. El Karoui N, Kapoudjian C, Pardoux E, Peng S, Quenez M (1997) Reflected solutions of BSDEs and related obstacle problems for PDE’s. Ann Probab 25(2):702–737

    Article  MathSciNet  MATH  Google Scholar 

  26. El Karoui N, Peng S, Quenez M (1997) Backward stochastic differential equations in finance. Math Financ 7(1):1–71

    Article  MathSciNet  MATH  Google Scholar 

  27. El Karoui N, Quenez M (1995) Dynamic programming and pricing of contingent claims in an incomplete market. SIAM J Control Optim 33(1):29–66

    Article  MathSciNet  MATH  Google Scholar 

  28. Funaro D (1992) Polynomial approximation of differential equations. Lecture notes in physics. Monographs 8. Springer, Berlin

    Book  MATH  Google Scholar 

  29. Gavalas G (1968) Nonlinear differential equations of chemically reacting systems, vol 17. Springer tracts in natural philosophy. Springer, New York

    Book  MATH  Google Scholar 

  30. Geiss C, Geiss S, Gobet E (2012) Generalized fractional smoothness and \(L_p\)-variation of BSDEs with non-Lipschitz terminal condition. Stoch Process Appl 122(5):2078–2116

    Article  MATH  MathSciNet  Google Scholar 

  31. Gobet E (2016) Monte-Carlo methods and stochastic processes: from linear to non-linear. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  32. Gobet E, Lemor JP, Warin X (2005) A regression-based Monte-Carlo method to solve backward stochastic differential equations. Ann Appl Probab 15(3):2172–2202

    Article  MathSciNet  MATH  Google Scholar 

  33. Gobet E, López-Salas JG, Turkedjiev P, Vázquez C (2016) Stratified regression Monte-Carlo scheme for semilinear PDEs and BSDEs with large scale parallelization on GPUs. SIAM J Sci Comput 38(6):C652–C677

    Article  MathSciNet  MATH  Google Scholar 

  34. Gobet E, Turkedjiev P (2016) Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression. Bernoulli 22(1):530–562

    Article  MathSciNet  MATH  Google Scholar 

  35. Gobet E, Turkedjiev P (2016) Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Math Comput 85(299):1359–1391

    Article  MathSciNet  MATH  Google Scholar 

  36. Gobet E, Turkedjiev P (2017) Adaptive importance sampling in least-squares Monte-Carlo algorithms for backward stochastic differential equations. Stoch Process Appl 127(4):1171–1203

    Article  MathSciNet  MATH  Google Scholar 

  37. Henry D (1981) Geometric theory of semilinear parabolic equations, Lecture notes in mathematics, vol 840. Springer, Berlin

    Book  MATH  Google Scholar 

  38. Henry-Labordere P, Tan X, Touzi N (2014) A numerical algorithm for a class of BSDEs via the branching process. Stoch Process Appl 124(2):1112–1140

    Article  MathSciNet  MATH  Google Scholar 

  39. Jackman S (2009) Bayesian analysis for the social sciences. Wiley Series in probability and statistics. Wiley, Sussex

    Book  MATH  Google Scholar 

  40. Johnson W (2002) Combinatorics of higher derivatives of inverses. Am Math Mon 109(3):273–277

    Article  MATH  Google Scholar 

  41. Johnson W (2002) The curious history of Faà di Bruno’s formula. Am Math Mon 109(3):217–234

    MATH  Google Scholar 

  42. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations. Springer, Berlin

    Book  MATH  Google Scholar 

  43. Krommer AR, Ueberhuber CW (1998) Comput Integr. SIAM, Philadelphia

    Book  Google Scholar 

  44. L’Ecuyer P (1999) Good parameters and implementations for combined multiple recursive random number generators. Oper Res 47(1):159–164

    Article  MathSciNet  MATH  Google Scholar 

  45. Lee VW, Kim C, Chhugani J, Deisher M, Nguyen AD, Satish N, Smelyanskiy M, Chennupaty S, Hammarlund P, Singhal R, Dubey P (2010) Debunking the 100X GPU vs. CPU Myth: an evaluation of throughput computing on CPU and GPU. Newsl ACM SIGARCH Comput Archit News 10(38):451–460

    Article  Google Scholar 

  46. Lemor JP, Gobet E, Warin X (2006) Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12(5):889–916

    Article  MathSciNet  MATH  Google Scholar 

  47. Ma J, Protter P, Yong J (1994) Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab Theory Relat Fields 98(3):339–359

    Article  MathSciNet  MATH  Google Scholar 

  48. Menozzi S, Lemaire V (2010) On some non asymptotic bounds for the Euler scheme. Electron J Probab 15(53):1645–1681

    Article  MathSciNet  MATH  Google Scholar 

  49. Nevai P (1986) Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J Approx Theory 48(1):3–167

    Article  MathSciNet  MATH  Google Scholar 

  50. Nvidia Coorporation (2014) NVIDIA's Next Generation CUDA Compute Architecture: Kepler GK110/210. http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-GK210-Architecture-Whitepaper.pdf

  51. OpenMP Architecture Review Board (2018) OpenMP Application Program Interface Version 5.0. https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf

  52. Pardoux E, Peng S (1990) Adapted solution of a backward stochastic differential equation. Syst Control Lett 14(1):55–61

    Article  MathSciNet  MATH  Google Scholar 

  53. Pardoux E, Peng S (1992) Backward stochastic differential equations and quasilinear parabolic partial differential equations. In: Stochastic partial differential equations and their applications. Lecture notes in control and information sciences, vol 176, pp 200–217. Springer

  54. Pardoux E, Rascanu A (2014) Stochastic differential equations, backward SDEs, partial differential equations, vol 69. Stochastic modelling and applied probability. Springer, Berlin

    MATH  Google Scholar 

  55. Peng S (2003) Nonlinear expectations, nonlinear evaluations and risk measures. In: Lectures presented in CIME EMS Bressanone, Italy, July 6 13, 2003

  56. Pham H (2009) Continuous-time stochastic control and optimization with financial applications, vol 61. Series stochastic modeling and applied probability. Springer, Berlin

    Book  MATH  Google Scholar 

  57. Shigesada N, Kawasaki K (1997) Biological invasions : theory and practice. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  58. Smoller J (1994) Shock waves and reaction-diffusion equations, vol 258, 2nd edn. Fundamental principles of mathematical sciences. Springer, New York

    Book  MATH  Google Scholar 

  59. Soner HM, Touzi N, Zhang J (2012) Well-posedness of second order backward SDEs. Probab Theory Relat Fields 153(1–2):149–190

    Article  MATH  Google Scholar 

  60. NVIDIA Thrust. http://developer.nvidia.com/thrust

  61. NVIDIA cuRAND. http://developer.nvidia.com/curand

  62. Visintin A (1996) Models of phase transitions, vol 28. Progress in nonlinear differential equations and their applications. Birkhäuser Boston Inc., Boston

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Germán López-Salas.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author research is part of the Finance for Energy Markets (FiME) lab, of the Chair Financial Risks of the Risk Foundation and of the ANR project CAESARS (ANR-15-CE05-0024). The second author has been financially supported by the Chair Financial Risks of the Risk Foundation, the Spanish Grant MTM2016-76497-R and the Xunta de Galicia 2018 postdoctoral grant. The third author was partially supported by Spanish Grant MTM2016-76497-R.

Appendix A: Technical Estimates on Student’s t-Distribution

Appendix A: Technical Estimates on Student’s t-Distribution

In this appendix, estimates on the CDF of the Student’s t-distribution, its inverse and the derivatives of the inverse of the CDF are computed. As we have been doing in the article, we use the same notation C for any generic constants, we will keep the same C from line to line, in order the alleviate the computations, although its value changes. In this appendix \(\nu _l\) stands for Student’s t-distribution density (2.11) with parameter \(\mu \), \(F_{\nu _{l}}\) its marginal CDF and \(F^{-1}_{\nu }\) its inverse.

Lemma 11

(Estimates on \(F_{\nu _{l}}\) and \(F^{-1}_{\nu _{l}}\)) Let\(x\in {\mathbb {R}}\), \(u\in (0,1)\). The following estimates hold

$$\begin{aligned} \begin{aligned} F_{\nu _{l}}(x)&\sim _{x\rightarrow -\infty } \dfrac{c_\mu }{\mu |x|^{\mu } }, \\ 1-F_{\nu _{l}}(x)&\sim _{x\rightarrow +\infty } \dfrac{c_\mu }{\mu |x|^{\mu }} , \\ F^{-1}_{\nu _{l}}(u)&\sim _{u\rightarrow 0^+} -{\tilde{c}}_\mu u^{-1/\mu } , \\ F^{-1}_{\nu _{l}}(u)&\sim _{u\rightarrow 1^-} {\tilde{c}}_\mu (1-u)^{-1/\mu }, \end{aligned} \end{aligned}$$
(A.1)

with\({\tilde{c}}_\mu = \left( \dfrac{c_\mu }{\mu }\right) ^{1/\mu }.\)

Proof

In view of (2.11) we know that \(\nu _{l}(x_l)\sim _{x_l\rightarrow \pm \infty }\dfrac{c_\mu }{|x_l|^{\mu +1}}\). Besides,

$$\begin{aligned} F_{\nu _{l}}(x) = \int _{-\infty }^x \nu _l(x_l)\mathrm{d}x_l \sim _{x\rightarrow -\infty } \int _{-\infty }^x \dfrac{c_\mu }{|x_l|^{\mu +1}} \mathrm{d}x_l = \dfrac{c_\mu }{\mu |x|^{\mu } }. \end{aligned}$$

The distribution \(\nu _l\) being symmetric, we have \(F_{\nu _{l}}(x)+F_{\nu _{l}}(-x)=1\) and \(F^{-1}_{\nu _{l}}(u)=-F^{-1}_{\nu _{l}}(1-u)\). Therefore, the estimate \(1- F_{\nu _{l}}(x)\) for \(x\rightarrow +\infty \) follows from the case \(x\rightarrow -\infty \).

In order to compute \(F^{-1}_{\nu _{l}}\) we use that \(F_{\nu _{l}}(F^{-1}_{\nu _{l}}(u))=u\):

If \(u\rightarrow 0^+\), \(F^{-1}_{\nu _{l}}(u)\rightarrow -\infty \), \(u = F_{\nu _{l}}(F^{-1}_{\nu _{l}}(u)) \sim _{u\rightarrow 0^+} \dfrac{c_\mu }{\mu |F^{-1}_{\nu _{l}}(u)|^\mu }\). Therefore,

$$\begin{aligned}&|F^{-1}_{\nu _{l}}(u)|^\mu \sim _{u\rightarrow 0^+} \dfrac{c_\mu }{\mu u},\\&|F^{-1}_{\nu _{l}}(u)| \underset{u\rightarrow 0^+}{=} -F^{-1}_{\nu _{l}}(u) \sim _{u\rightarrow 0^+}\left( \dfrac{c_\mu }{\mu u}\right) ^{1/\mu }, \end{aligned}$$

which is the advertised result. The case \(u\rightarrow 1^-\) follows from the case for \(u\rightarrow 0^+\) using again the symmetry of the distribution \(\nu _l\). \(\square \)

Lemma 12

(Estimates on derivatives of \(\frac{1}{(1+|\mathbf {x}|^2)^{q/2}}\)) Let\(\mathbf {x}\in {\mathbb {R}}^d\), \(q\in {\mathbb {R}}^+\)and\(n\in {\mathbb {N}}\). The following upper bound holds

$$\begin{aligned} \left| \partial ^n_{x_l} \dfrac{1}{(1+|\mathbf {x}|^2)^{q/2}}\right| \le C( 1+|\mathbf {x}|^2)^{-q/2-n/2}. \end{aligned}$$
(A.2)

Proof

We only have to consider the case \(n\ge 1\). In order to compute \(\partial ^n_{x_l} \dfrac{1}{(1+|\mathbf {x}|^2)^{q/2}}\) we use the following Faà di Bruno’s formula (as long as the partial derivative is only with respect to one variable we can extend in the following way the one-dimensional Faà di Bruno’s formula (2.34)):

$$\begin{aligned} \begin{aligned} \partial _{x_l}^n f(g(\mathbf {x}))&= \sum _{m=1}^n \frac{1}{m!}\mathrm{{d}}_{u}^m f(u)\big |_{u=g(\mathbf {x})} \sum _{\mathbf {j}\in J_{m,n}} \dfrac{n!}{j_1!j_2!\cdots j_m!} \prod _{i=1}^m \partial _{x_l}^{j_i} g(\mathbf {x}),\\ J_{m,n}&=\{\mathbf {j}=(j_1,\ldots ,j_m)\in {\mathbb {N}}^m_+:j_1+\ldots +j_m = n\}. \end{aligned} \end{aligned}$$
(A.3)

Here, consider \(f(u)=u^{-q/2}\) and \(g(\mathbf {x})=1+|\mathbf {x}|^2\): \(\mathrm{d}^m_u f(u) = C_{m,q} u^{-q/2-m}\) and \(\partial _{x_l}^{j} g(\mathbf {x})=2 x_l{\mathbf {1}}_{j=1}+2{\mathbf {1}}_{j=2}\). Observe that in the Faà di Bruno’s formula (A.3), the sum over \(\mathbf {j}\in J_{m,n}\) will be made only for \(j_i=1\) with \(m_1:=\#\{j_i:\mathbf {j}\in J_{m,n}, j_i=1\}\) terms, and for \(j_i=2\) with \(m_2:=\#\{j_i:\mathbf {j}\in J_{m,n}, j_i=2\}\) terms. Owing to this property and by definition of \(J_{m,n}\), we have \(m_1+2m_2=n\) and \(m_1+m_2=m\), which results in \(m_1=2m-n\) and \(m_2=n-m\). Invoking the form of the derivatives \(\partial _{x_l}^{j_i} g(\mathbf {x})\), it readily follows that

$$\begin{aligned} \prod _{i=1}^m \partial _{x_l}^{j_i} g(\mathbf {x})=2^m x^{m_1}_l. \end{aligned}$$

All in all, we deduce

$$\begin{aligned}&\left| \partial ^n_{x_l} \dfrac{1}{(1+|\mathbf {x}|^2)^{q/2}}\right| \le C \sum _{m= \lceil {n/2\rceil }}^n ( 1+|\mathbf {x}|^2)^{-q/2-m} (1+|x_l|)^{2m-n}\\&\quad \le C \sum _{m= \lceil {n/2}\rceil }^n ( 1+|\mathbf {x}|^2)^{-q/2-m} (1+|\mathbf {x}|^2)^{m-n/2}\\&\quad \le C( 1+|\mathbf {x}|^2)^{-q/2-n/2}. \end{aligned}$$

\(\square \)

Lemma 13

(Estimates on derivatives of \(\frac{1}{(1+|\mathbf {x}|^2)^{q/2}}\)) Let\(\mathbf {x}\in {\mathbb {R}}^d\), \(q\in {\mathbb {R}}^+\), \(\mathbf {n} = (n_1,\ldots ,n_d) \in {\mathbb {N}}_+^d\). The following upper bound holds

$$\begin{aligned} \left| {\partial ^{\mathbf {n}}_x} \dfrac{1}{(1+|\mathbf {x}|^2)^{q/2}}\right| \le C( 1+|\mathbf {x}|^2)^{-q/2-\overline{\mathbf {n}}/2}. \end{aligned}$$
(A.4)

Proof

We only have to consider the case \(\overline{\mathbf {n}}\ge 1\). For such \(\mathbf {n}\), we use the following multivariate Faà di Bruno’s formula derived from [15, Corollary 2.10]

$$\begin{aligned} \begin{aligned} {\partial ^{\mathbf {n}}_x} f(g(\mathbf {x}))&= \sum _{m=1}^{\overline{\mathbf {n}}} \mathrm{{d}}_{u}^m f(u)\big |_{u=g(\mathbf {x})} \sum _{J\in \mathbf {J}_{m,\mathbf {n}}} C_{m,J} \prod _{i=1}^m {\partial ^{\mathbf {j}_i}_{x}} g(\mathbf {x}),\\ \mathbf {J}_{m,\mathbf {n}}&=\left\{ J= \begin{pmatrix} \mathbf {j}_1 \\ \vdots \\ \mathbf {j}_m \end{pmatrix} \in {\mathbb {N}}^m \times {\mathbb {N}}^d : \mathbf {j}_1+\ldots +\mathbf {j}_m = \mathbf {n}, \mathbf {j}_1,\ldots ,\mathbf {j}_m \ne \mathbf {0}\right\} , \end{aligned} \end{aligned}$$
(A.5)

where the positive constants \(C_{m,J}\) depend on m and the matrix J under consideration.

Note that non coordinate-wise derivatives of \(g(\mathbf {x})=1+|\mathbf {x}|^2\) are all zero. Besides, coordinate-wise derivatives of g are \(\partial _{x_l}^{j} g(\mathbf {x})=2 x_l{\mathbf {1}}_{j=1}+2{\mathbf {1}}_{j=2}\). For a given J, let \(a_{l} \in {\mathbb {N}}\, \forall l=1,\ldots ,d\) denote the number of vectors in J with 1 in the l-th coordinate and zero anywhere else. It holds that

$$\begin{aligned} &\prod _{i=1}^m \partial ^{\mathbf {j}_i}_x g(\mathbf {x})= {\mathbf {1}}_{2m\ge \overline{\mathbf {n}}}C x_1^{a_{1}}\cdots x_d^{a_{d}} \text{ with } a_{1}+\ldots +a_{d} = 2m-\overline{\mathbf {n}},\\ &{\left| \prod _{i=1}^m \partial ^{\mathbf {j}_i}_x g(\mathbf {x}) \right| } \le C (1+|\mathbf {x}|^2)^{a_{1}/2}\cdots (1+|\mathbf {x}|^2)^{a_{d}/2} {\mathbf {1}}_{\sum _{l=1}^d a_{l} = 2m-\overline{\mathbf {n}}}\\ &\qquad\qquad\quad\le C (1+|\mathbf {x}|^2)^{m-\overline{\mathbf {n}}/2} \end{aligned}$$

for \(2m\ge \overline{\mathbf {n}}\). All in all, we deduce

$$\begin{aligned}&\left| {\partial ^{\mathbf {n}}_x} \dfrac{1}{(1+|\mathbf {x}|^2)^{q/2}}\right| \\&\quad \le C \sum _{m= \lceil {\overline{\mathbf {n}}/2}\rceil }^{\overline{\mathbf {n}}} ( 1+|\mathbf {x}|^2)^{-q/2-m} (1+|\mathbf {x}|^2)^{m-\overline{\mathbf {n}}/2}\\&\quad \le C( 1+|\mathbf {x}|^2)^{-q/2-\overline{\mathbf {n}}/2}. \end{aligned}$$

\(\square \)

Lemma 14

(Estimates on derivatives of Student’s t-distribution) Let\(n\in {\mathbb {N}}\). The following upper bound holds

$$\begin{aligned} |\mathrm{d}_x^{n}\nu _l(x)| \le C(1+x^2)^{-\frac{\mu +1}{2}-\frac{n}{2}}. \end{aligned}$$
(A.6)

Proof

This result follows readily using the previous estimate (A.2). \(\square \)

Lemma 15

(Estimates on derivatives of \(F^{-1}_{\nu _{l}}\)) Let\(n\in {\mathbb {N}}\). The following upper bounds hold

$$\begin{aligned} \left| \mathrm{d}^{n}_{u}F^{-1}_{\nu _{l}}(u) \right|&\le _{u\rightarrow 0^+} C u^{-\frac{\mu n +1}{\mu }}, \\ \left| \mathrm{d}^{n}_{u}F^{-1}_{\nu _{l}}(u) \right|&\le _{u\rightarrow 1^-} C (1-u)^{-\frac{\mu n +1}{\mu }}, \end{aligned}$$
(A.7)

Cis a constant depending on\(\mu \)andn.

Proof

Using the combinatorial formula for higher derivatives of inverses [40] and the fact that for \(b\in {\mathbb {N}}\), \(b\ge 1\), \(\mathrm{d}^b_{x}F_{\nu _{l}}(x) = \mathrm{d}_x^{b-1}\nu _l(x)\),

$$\begin{aligned}&\mathrm{d}^{n+1}_{u}F^{-1}_{\nu _{l}}(u) = \sum _{k=0}^n \dfrac{(-1)^k}{k!} [\nu _l(x)|_{x=F^{-1}_{\nu _{l}}(u)}]^{-n-k-1} \\&\quad \times \sum _{\begin{array}{c} b_1+\cdots +b_{k} = n+k \\ b_i\ge 2 \end{array}} \dfrac{(n+k)!}{b_1!b_2!\cdots b_k!} \prod _{i=1}^{k} \mathrm{d}_x^{b_i-1}\nu _l(x)|_{x=F^{-1}_{\nu _{l}}(u)}. \end{aligned}$$

Therefore, using (A.6),

$$\begin{aligned}&|\mathrm{d}^{n+1}_{u}F^{-1}_{\nu _{l}}(u)| \le \sum _{k=0}^n C \left[ \left( 1+\left( F^{-1}_{\nu _{l}}(u)\right) ^2\right) ^{-\frac{\mu +1}{2}} \right] ^{-n-k-1} \\&\qquad \times \sum _{\begin{array}{c} b_1+\cdots +b_{k} = n+k \\ b_i\ge 2 \end{array}} \quad \prod _{i=1}^{k} \left( 1+\left( F^{-1}_{\nu _{l}}(u)\right) ^2\right) ^{-\frac{\mu +1}{2}-\frac{b_i-1}{2}} \\&\quad \le \sum _{k=0}^n C \left( 1+\left( F^{-1}_{\nu _{l}}(u)\right) ^2\right) ^{\frac{\mu +1}{2}(n+k+1)-\frac{k(\mu +1)+n}{2}}\\&\quad \le C \left( 1+\left( F^{-1}_{\nu _{l}}(u)\right) ^2\right) ^{\frac{\mu (n+1)+1}{2}}. \end{aligned}$$

Finally, combining the previous upper bound with (A.1) yields

$$\begin{aligned} \left| \mathrm{d}^{n}_{u}F^{-1}_{\nu _{l}}(u) \right|&\le _{u\rightarrow 0^+} C \left| F^{-1}_{\nu _{l}}(u) \right| ^{\mu n+1} \le _{u\rightarrow 0^+} C u^{-\frac{\mu n +1}{\mu }}, \\ \left| \mathrm{d}^{n}_{u}F^{-1}_{\nu _{l}}(u) \right|&\le _{u\rightarrow 1^-} C (1-u)^{-\frac{\mu n +1}{\mu }}, \end{aligned}$$

where the constant C may change value along computations. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gobet, E., López-Salas, J.G. & Vázquez, C. Quasi-Regression Monte-Carlo Scheme for Semi-Linear PDEs and BSDEs with Large Scale Parallelization on GPUs. Arch Computat Methods Eng 27, 889–921 (2020). https://doi.org/10.1007/s11831-019-09335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-019-09335-x

Mathematics Subject Classification

Navigation