Skip to main content
Log in

Solving nonlinear parabolic PDEs via extended hybrid BDF methods

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

The details of new methods based on backward differentiation formulas (BDF) for the MOL solution of one-dimensional nonlinear time dependent PDEs are presented. In these extended hybrid BDF methods, we say EHBDF, one additional stage point (or off-step point) together with one step point have been used in the first derivative of the solution. All presented methods, of order p, p = 2,3,..., 12, are A(α)-stable whereas they have wide stability regions comparing with those of some known methods such as BDF, extended BDF (EBDF) and modified EBDF (MEBDF) methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alexander, Diagonally implicit Runge-Kutta methods for stiff ODEs, SIAM J. Nume. Anal., 14(1977), 1006–1021.

    Article  MATH  Google Scholar 

  2. J. C. Butcher and W. M. Wright, Applications of doubly companion matrices, Appl. Numer. Math., 56 (2006), 358–373.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. C. Butcher and M. Diamantakis, DESIRE: Diagonally extended singly-implicit Runge-Kutta effective order methods, Numer. Algorithms, 17 (1998), 121–145.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. C. Butcher, J. R. Cash and M. Diamantakis, DESI methods for stiff initial value problems, ACM Trans. Math. Software, 22 (1996), 401–422.

    Article  MATH  MathSciNet  Google Scholar 

  5. K. Burrage, J. C. Butcher and F. H. Chipman, An implementation of singly-imphcit Runge-Kutta methods, BIT, 20 (1980), 326–340.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Burrage, A special family of Runge-Kutta methods for solving stiff differential equations, BIT, 18 (1978), 22–41.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. R. Cash, Modified extended backward differentiation formulae for the numerical solution of stiff initial value problems in ODEs and DAEs, J. CAM, 125 (2000), 117–130.

    MATH  MathSciNet  Google Scholar 

  8. J. R. Cash, [G-]Y. Psihoyios, The MOL solution of time dependent partial differential equations, Comput. Math. Appl., 31(11) (1996), 69–78.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. R. Cash and S. Considine, An MEBDF code for stiff initial value problem, ACM Trans. Math. Software, 18 (1992), 142–160.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. R. Cash, On the integration of stiff systems of ODEs using modified extended backward differentiation formula, Comput. Math. Appl., 9 (1983), 645–657.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. R. Cash, On the integration of stiff systems of ODEs using extended backward differentiation formula, Numer. Math., 34(2) (1980), 235–246.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Diamantakis, Diagonally extended singly-implicit Runge-Kutta methods for stiff IVPs, Ph.D. Thesis, Imperial college, London, 1995.

    Google Scholar 

  13. M. T. Diamantakis, The NUMOL solution of time dependent PDEs using DESI Runge-Kutta formulae, Appl. Num. Maths., 17 (1995), 235–249.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Ebadi and M. Y. Gokhale, Hybrid BDF methods for the numerical solutions of ordinary differential equations, Numer. Algorithms, 55 (2010), 1–17.

    Article  MATH  MathSciNet  Google Scholar 

  15. Moosa Ebadi, A class of multistep methods based on a super-future points technique for solving IVPs, Computers and Mathematics with Applications, 61 (2011), 3288–3297.

    Article  MATH  MathSciNet  Google Scholar 

  16. Moosa Ebadi and M. Y. Gokhale, Class 2+1 Hybrid BDF-Like methods for the numerical solutions of ordinary differential equations, Calcolo, DOI: 10.1007/sl0092-011-0038-9, (2011).

    Google Scholar 

  17. C. Fredebeul, A- BDF: a generalization of the backward differentiation formulae, SIAM J. Numer. Anal., 35(5) (1998), 1917–1938.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Y. Gokhale and M. Ebadi, New hybrid methods for the numerical solution of stiff systems, IJMSEA, IJMSEA, 5(III) (2011), 233–246.

    MathSciNet  Google Scholar 

  19. E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problem, Springer, Berlin, 1996.

    Book  Google Scholar 

  20. G. Hojjati, M. Y. Rahimi Ardabili and S. M. Hosseini, A- EBDF: an adaptive method for numerical solution of stiff systems of ODEs, Maths. Comput. Simul., 66 (2004), 33–41.

    Article  MATH  Google Scholar 

  21. M. K. Jain, Numerical solution of differential equations, Second edition, (2002).

    Google Scholar 

  22. C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, Fundamentals of algorithms, SIAM, Philadelphia, (2003).

    Book  Google Scholar 

  23. Toshyuki Koto, IMEX Runge-Kutta schemes for reaction-diffusion equations, J. Comp. Appl. Maths., 215 (2008), 182–195.

    Article  MATH  MathSciNet  Google Scholar 

  24. J. D. Lambert, Computational methods in ordinary differential equations, John Wiley and Sons, London, pp. 143–144 (1972).

    Google Scholar 

  25. J. Lowson, M. Berzins and P. M. Dew, Balancing space and time errors in the method of lines for parabolic equations, SIAM J. Sci. Stat. Comput., 12(3) (1991), 573–594.

    Article  Google Scholar 

  26. G. Psihoyios, Solving time dependent PDEs via an improved modified extended BDF scheme, Appl. Math. Comput., 184 (2007), 104–115.

    Article  MATH  MathSciNet  Google Scholar 

  27. J. Stoer and R. Bulirsch, Introduction to numerical analysis, Second edition, Springer, (1992).

    Google Scholar 

  28. S. J. Ying Huang, Implementation of general linear methods for stiff ordinary differential equations, Ph.D Thesis, Department of mathematics, Auckland University, (2005).

    Google Scholar 

  29. Xin-Yuan Wu, A sixth-order A-stable explicit one-step method for stiff systems, Computers Math. Applic., 35(9) (1998), PP. 59–64.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moosa Ebadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi, M., Gokhale, M.Y. Solving nonlinear parabolic PDEs via extended hybrid BDF methods. Indian J Pure Appl Math 45, 395–412 (2014). https://doi.org/10.1007/s13226-014-0070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-014-0070-y

Key words

Navigation