Skip to main content
Log in

Weighted Average Continuity Approach and Moment Correction: New Strategies for Non-consistent Mesh Projection in Structural Mechanics

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Tying non-matching meshes is needed in many instances of finite element modeling. Multiple techniques have been proposed in the literature to accomplish the correct communication between different discretizations. They all seek to achieve some trade-off in terms of accuracy, complexity and computational cost. In this work we review several of the existing techniques and benchmark them on several simple test problems in terms of accuracy and computational cost. We also discuss some of the drawbacks and limitations of the existing methods. We then propose two novel contributions. First, a new approach that imposes the continuity of the displacement field at the interface in a point-wise manner only after an integral weighted averaging procedure over each interface. Second, a procedure for the correction of the interpolation operator based on the balance of internal forces and moments at the interface is proposed, which is applicable to all the reviewed methods, both existing and the new proposed one. All the considered approaches are benchmarked on several test problems in terms of various error measures for displacements, stresses, interface forces and moments, total work at the interface and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In this paper we call ESF the use of element shape function to interpolate the displacement field at the interface.

  2. In these expression the terms \(\int _{\varGamma _1}{({\varvec{v}} \cdot {\varvec{t}}_{21} )d\varGamma _1}\) and \(\int _{\varGamma _2}{({\varvec{v}} \cdot {\varvec{t}}_{12} )d\varGamma _2}\) is due to the work of internal forces at the boundary in a variational approach it would naturally vanishes considering the work over the whole structure.

  3. The standard Galerkin approximation is well established approach that produces a symmetric stiffness matrix consistent with the classic variational formulation, more generally the space of function of \({\mathbb{U}}^h\) and \({\mathbb{V}}^h\) may not be the same as it is the case for the Petrov-Galerkin methods.

  4. In this case even the definition of corresponding elements is not straightforward. A possible definition is that two elements are corresponding if the area of the intersection between one element surface and the projection of the other element surface on the first one is positive and if the element center distance is less then a given tolerance

  5. In these approaches it is avoid the use of Lagrange multipliers like in the Mortar methods ([7, 8]) anyway when the shape functions of Lagrange multipliers are the same of the displacement field of the slave surface, the consequent equations are the same as it is also shown in Jeon et al. [47]

  6. Note that \(\varGamma _{j1}^*\) sides are generally curbed, in this work they are considered to be straights, this approximation will affect the accuracy of the evaluation of \({\mathbf{M_{21}}}\). in Eq. (39). Nevertheless the error induced by this approximation can be considered negligible

  7. In the work of Puso et al [60] the dual space is also employed

  8. \({\varvec{S}}_1\) and \({\varvec{S}}_2\) are also indicated as lumped mass matrix

  9. As mentioned before we considered the error average over interface (\(\varGamma _1\)) nodes for displacement and the average over all the upper domain Gauss points for stress

References

  1. Aminpour MA, Ransom JB, McCleary SL (1995) A coupled analysis method for structures with independently modelled finite element subdomains. Int J Numer Methods Eng 38(21):3695–3718

    Article  MATH  Google Scholar 

  2. Babuška I (1973) The finite element method with lagrangian multipliers. Numerische Math 20(3):179–192

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška I, Narasimhan R (1997) The babuška-brezzi condition and the patch test: an example. Comput Methods Appl Mech Eng 140(1–2):183–199

    Article  MATH  Google Scholar 

  4. Barlow J (1982) Constraint relationships in linear and nonlinear finite element analyses. Int J Numer Methods Eng 18(4):521–533

    Article  MATH  Google Scholar 

  5. Becker R, Hansbo P, Stenberg R (2003) A finite element method for domain decomposition with non-matching grids. ESAIM Math Model Numer Anal 37(2):209–225

    Article  MathSciNet  MATH  Google Scholar 

  6. Beckert A, Wendland H (2001) Multivariate interpolation for fluid-structure-interaction problems using radial basis functions. Aerosp Sci Technol 5(2):125–134

    Article  MATH  Google Scholar 

  7. Bernardi C, Maday Y, Patera A (1994) A new nonconforming approach to domain decomposition: the mortar element method. In: Nonlinear partial differential equations and their applications: Collège de France seminar volume XI (Paris, 1989 –1991), Pitman research notes in mathematics series, vol 299. Longman Sci. Tech., Harlow, pp 13–51

  8. Bernardi C, Maday Y, Patera AT (1993) Domain decomposition by the mortar element method. Asymptot Numer Methods Partial Differ Equ Crit Parameters 384:269–286

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertsekas DP (2014) Constrained optimization and Lagrange multiplier methods. Academic press, Cambridge

    MATH  Google Scholar 

  10. Bitencourt LA, Manzoli OL, Prazeres PG, Rodrigues EA, Bittencourt TN (2015) A coupling technique for non-matching finite element meshes. Comput Methods Appl Mech Eng 290:19–44

    Article  MathSciNet  MATH  Google Scholar 

  11. Bochev P, Day D (2007) A least-squares method for consistent mesh tying. Int J Numer Anal Model 4:342–352

    MathSciNet  MATH  Google Scholar 

  12. de Boer A, van Zuijlen AH, Bijl H (2008) Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng 197(49):4284–4297

    Article  MATH  Google Scholar 

  13. Brandt A (2002) Multiscale scientific computation: review 2001. Springer, Berlin, pp 3–95

    MATH  Google Scholar 

  14. Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  15. Cafiero M, Lloberas-Valls O, Cante J, Oliver J (2016) The domain interface method: a general-purpose non-intrusive technique for non-conforming domain decomposition problems. Comput Mech 57:555

    Article  MathSciNet  MATH  Google Scholar 

  16. Cebral JR, Lohner R (1997) Conservative load projection and tracking for fluid-structure problems. AIAA J 35(4):687–692

    Article  MATH  Google Scholar 

  17. Cho YS, Im S (2006) Mls-based variable-node elements compatible with quadratic interpolation. part i: formulation and application for non-matching meshes. Int J Numer Methods Eng 65(4):494–516

    Article  MATH  Google Scholar 

  18. Cho YS, Im S (2006) Mls-based variable-node elements compatible with quadratic interpolation. part ii: application for finite crack element. Int J Numer Methods Eng 65(4):517–547

    Article  MATH  Google Scholar 

  19. Cho YS, Jun S, Im S, Kim HG (2005) An improved interface element with variable nodes for non-matching finite element meshes. Comput Methods Appl Mech Eng 194(27):3022–3046

    Article  MATH  Google Scholar 

  20. Christensen P, Klarbring A, Pang JS, Strömberg N (1998) Formulation and comparison of algorithms for frictional contact problems. Int J Numer Methods Eng 42(1):145–173

    Article  MathSciNet  MATH  Google Scholar 

  21. Fj D, Van DA (1996) Computer graphics principles & practice second edition in c. Addison-Wesley, Boston

    Google Scholar 

  22. Davidon W (1959) Aec research and development report. ANL-5990

  23. De Boer A, Van Zuijlen A, Bijl H (2007) Review of coupling methods for non-matching meshes. Comput Methods Applied Mech Eng 196(8):1515–1525

    Article  MathSciNet  MATH  Google Scholar 

  24. Dennis JE Jr, Moré JJ (1977) Quasi-newton methods, motivation and theory. SIAM Rev 19(1):46–89

    Article  MathSciNet  MATH  Google Scholar 

  25. Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  26. Deparis S, Forti D, Gervasio P, Quarteroni A (2016) Internodes: an accurate interpolation-based method for coupling the galerkin solutions of pdes on subdomains featuring non-conforming interfaces. Comput Fluids 141:22–41

    Article  MathSciNet  MATH  Google Scholar 

  27. Deparis S, Forti D, Quarteroni A (2014) A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J Sci Comput 36(6):A2745–A2762

    Article  MathSciNet  MATH  Google Scholar 

  28. Dhia HB, Elkhodja N, Roux FX (2008) Multimodeling of multi-alterated structures in the arlequin framework: solution with a domain-decomposition solver. Eur J Comput Mech /Revue Européenne de Mécanique Numérique 17(5–7):969–980

    Article  MATH  Google Scholar 

  29. Dhia HB, Rateau G (2005) The arlequin method as a flexible engineering design tool. Int J Numer Methods Eng 62(11):1442–1462

    Article  MATH  Google Scholar 

  30. Dohrmann C, Key S, Heinstein M (2000) A method for connecting dissimilar finite element meshes in two dimensions. Int J Numer Methods Eng 48(5):655–678

    Article  MATH  Google Scholar 

  31. Dohrmann C, Key S, Heinstein M (2000) Methods for connecting dissimilar three-dimensional finite element meshes. Int J Numer Methods Eng 47(5):1057–1080

    Article  MATH  Google Scholar 

  32. Duarte CA, Kim DJ (2008) Analysis and applications of a generalized finite element method with global-local enrichment functions. Comput Methods Appl Mech Eng 197(6):487–504

    Article  MathSciNet  MATH  Google Scholar 

  33. Duchon J (1977) Splines minimizing rotation-invariant semi-norms in sobolev spaces. In: Constructive theory of functions of several variables. Springer, Berlin, Heidelberg, pp 85–100

  34. Duval M, Passieux JC, Salaün M, Guinard S (2016) Non-intrusive coupling: recent advances and scalable nonlinear domain decomposition. Arch Comput Methods Eng 23(1):17

    Article  MathSciNet  MATH  Google Scholar 

  35. Farhat C, Lesoinne M, Le Tallec P (1998) Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput Methods Appl Mech Eng 157(1–2):95–114

    Article  MathSciNet  MATH  Google Scholar 

  36. Farhat C, Roux FX (1991) A method of finite element tearing and interconnecting and its parallel solution algorithm. Int J Numer Methods Eng 32(6):1205–1227

    Article  MathSciNet  MATH  Google Scholar 

  37. Feyel F, Chaboche JL (2000) Fe 2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre sic/ti composite materials. Comput Methods Appl Mech Eng 183(3):309–330

    Article  MATH  Google Scholar 

  38. Fish J, Belsky V, Pandheeradi M (1995) Iterative and direct solvers for interface problems with lagrange multipliers. Comput Syst Eng 6(3):261–273

    Article  MATH  Google Scholar 

  39. Flemisch B, Kaltenbacher M, Triebenbacher S, Wohlmuth B (2012) Non-matching grids for a flexible discretization in computational acoustics. Commun Comput Phys 11(2):472–488

    Article  MathSciNet  MATH  Google Scholar 

  40. Fletcher R, Powell MJ (1963) A rapidly convergent descent method for minimization. Comput J 6(2):163–168

    Article  MathSciNet  MATH  Google Scholar 

  41. Gander MJ, Japhet C (2013) Algorithm 932: Pang: software for nonmatching grid projections in 2d and 3d with linear complexity. ACM Trans Math Softw (TOMS) 40(1):6

    Article  MathSciNet  MATH  Google Scholar 

  42. Gervasio P, Quarteroni A (2018) Analysis of the internodes method for non-conforming discretizations of elliptic equations. Comput Methods Appl Mech Eng 334:138–166

    Article  MathSciNet  Google Scholar 

  43. Hartmann S, Oliver J, Weyler R, Cante J, Hernández J (2009) A contact domain method for large deformation frictional contact problems. part 2: numerical aspects. Comput Methods Appl Mech Eng 198(33):2607–2631

    Article  MATH  Google Scholar 

  44. Heintz P, Hansbo P (2006) Stabilized lagrange multiplier methods for bilateral elastic contact with friction. Comput Methods Appl Mech Eng 195(33):4323–4333

    Article  MathSciNet  MATH  Google Scholar 

  45. Hinton E, Campbell J (1974) Local and global smoothing of discontinuous finite element functions using a least squares method. Int J Numer Methods Eng 8(3):461–480

    Article  MathSciNet  MATH  Google Scholar 

  46. Hou G, Wang J, Layton A (2012) Numerical methods for fluid-structure interaction—a review. Commun Comput Phys 12(2):337–377

    Article  MathSciNet  MATH  Google Scholar 

  47. Jeong GE, Youn SK, Park K (2017) Element-independent implementation for method of lagrange multipliers. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 11(2):343–347

    Google Scholar 

  48. Kim HG (2003) Interface element method: treatment of non-matching nodes at the ends of interfaces between partitioned domains. Comput Methods Appl Mech Eng 192(15):1841–1858

    Article  MATH  Google Scholar 

  49. Lim JH, Im S, Cho YS (2007) Mls (moving least square)-based finite elements for three-dimensional nonmatching meshes and adaptive mesh refinement. Comput Methods Appl Mech Eng 196(17):2216–2228

    Article  MATH  Google Scholar 

  50. Lim JH, Im S, Cho YS (2007) Variable-node elements for non-matching meshes by means of mls (moving least-square) scheme. Int J Numer Methods Eng 72(7):835–857

    Article  MATH  Google Scholar 

  51. Lloberas-Valls O, Cafiero M, Cante J, Ferrer A, Oliver J (2017) The domain interface method in non-conforming domain decomposition multifield problems. Comput Mech 59(4):579–610

    Article  MathSciNet  MATH  Google Scholar 

  52. Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) Multiscale domain decomposition analysis of quasi-brittle heterogeneous materials. Int J Numer Methods Eng 89(11):1337–1366

    Article  MathSciNet  MATH  Google Scholar 

  53. Lloberas-Valls O, Rixen D, Simone A, Sluys L (2012) On micro-to-macro connections in domain decomposition multiscale methods. Comput Methods Appl Mech Eng 225:177–196

    Article  MathSciNet  MATH  Google Scholar 

  54. Löhner R, Yang C, Cebral J, Baum JD, Luo H, Pelessone D, Charman C (1998) Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids. In: Proceedings of the 29th AIAA fluid dynamics conference

  55. Mandel J (1993) Balancing domain decomposition. Int J Numer Methods Biomed Eng 9(3):233–241

    MathSciNet  MATH  Google Scholar 

  56. McGee W, Seshaiyer P (2005) Non-conforming finite element methods for nonmatching grids in three dimensions. In: Domain decomposition methods in science and engineering. Springer, Berlin, Heidelberg, pp 327–334

  57. Nitsche J (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Proceedings of Mathematischen Seminar der Universität Hamburg. Springer-Verlag, p 9–15

  58. Oliver J, Hartmann S, Cante J, Weyler R, Hernández J (2009) A contact domain method for large deformation frictional contact problems. part 1: theoretical basis. Comput Methods Appl Mech Eng 198(33):2591–2606

    Article  MATH  Google Scholar 

  59. Park K, Felippa C, Rebel G (2002) A simple algorithm for localized construction of non-matching structural interfaces. Int J Numer Methods Eng 53(9):2117–2142

    Article  MATH  Google Scholar 

  60. Puso MA (2004) A 3d mortar method for solid mechanics. Int J Numer Methods Eng 59(3):315–336

    Article  MathSciNet  MATH  Google Scholar 

  61. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6):601–629

    Article  MATH  Google Scholar 

  62. Quiroz L, Beckers P (1995) Non-conforming mesh gluing in the finite elements method. Int J Numer Methods Eng 38(13):2165–2184

    Article  MATH  Google Scholar 

  63. Rixen DJ (1997) Substructuring and dual methods in structural analysis. Ph.D. thesis

  64. Shi ZC (1987) The fem test for convergence of nonconforming finite elements. Math Comput 49(180):391–405

    MATH  Google Scholar 

  65. Shillor M, Sofonea M, Telega JJ (2004) 7 Elastic contact. In: Models and Analysis of Quasistatic Contact. Springer, Berlin, Heidelberg, p 101–115

  66. Smith MJ, Cesnik CE, Hodges DH (2000) Evaluation of some data transfer algorithms for noncontiguous meshes. J Aerosp Eng 13(2):52–58

    Article  Google Scholar 

  67. Sofonea M, Han W, Shillor M (2005) Analysis and approximation of contact problems with adhesion or damage. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  68. Song YU, Youn SK, Park K (2017) Virtual gap element approach for the treatment of non-matching interface using three-dimensional solid elements. Comput Mech 60:1–10

    Article  MathSciNet  MATH  Google Scholar 

  69. Stummel F (1979) The generalized patch test. SIAM J Numer Anal 16(3):449–471

    Article  MathSciNet  MATH  Google Scholar 

  70. Stummel F (1980) The limitations of the patch test. Int J Numer Methods Eng 15(2):177–188

    Article  MATH  Google Scholar 

  71. Thévenaz P, Blu T, Unser M (2000) Interpolation revisited [medical images application]. IEEE Trans Med Imag 19(7):739–758

    Article  Google Scholar 

  72. Tian R, Yagawa G (2007) Non-matching mesh gluing by meshless interpolationan alternative to lagrange multipliers. Int J Numer Methods Eng 71(4):473–503

    Article  MATH  Google Scholar 

  73. Wang X, Prakash A, Chen JS, Taciroglu E (2017) Variationally consistent coupling of non-matching discretizations for large deformation problems. Comput Mech 60:465–478

    Article  MathSciNet  MATH  Google Scholar 

  74. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396

    Article  MathSciNet  MATH  Google Scholar 

  75. Wriggers P (1995) Finite element algorithms for contact problems. Arch Comput Methods Eng 2(4):1–49

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the Association Nationale de la Recherche et de la Technologie (ANRT) through Grant No. CIFRE-2016/0539. We would also like to thank Dr. Simone Deparis (EPFL) for fruitful discussions, in particular with respect to the Internodes method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gogu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest

Appendices

Appendix 1

We provide in Fig. 25 the results of the convergence study, which led to the choice of the mesh density used in Sect. 4.1 and thereafter as reference configurations. In both configuration the reference situation chosen for this study (n=10 and m=20) show a max displacement discretization error that is less than \(2\%\)

Fig. 25
figure 25

Convergence of the maximum displacement with mesh density : a for configuration (1) and b for configuration (2). The mesh was changed keeping the same element aspect ratio and the conforming interfaces in Fig. 13under the form \({\text{n}} \times {\text{n}} \times 10\) for the upper domain of configuration 1 and \({\text{m}} \times {\text{m}} \times 10\) for the upper domain of configuration 2

Appendix 2

In this appendix we report the detailed error analysis of each benchmark configuration, while varying the mesh density. All error measures introduced in Sect. 4.2 are provided in Figs. 2629 for both configuration considered.

Fig. 26
figure 26

Benchmark results in configuration (1) impact of n over: a\(E_R\), the Resultant Force relative error, b\(E_M\), the moment relative error, c\(E_c\), the interface compliance relative error, d\(E_d\), the displacement discontinuity relative error, e\(E_{\sigma }\), the maximum of Von Mises stress relative error, f\(E_U\), interface displacement field relative error, g\(E_S\), average Von Mises stress relative error, h CPU time (s)

Fig. 27
figure 27

Benchmark results in configuration (2)impact of m over: a\(E_R\), the Resultant Force relative error, b\(E_M\), the moment relative error, c\(E_c\), the interface compliance relative error, d\(E_d\), the displacement discontinuity relative error, e\(E_{\sigma }\), the maximum of Von Mises stress relative error, f\(E_U\), interface displacement field relative error, g\(E_S\), average Von Mises stress relative error, h CPU time (s)

Fig. 28
figure 28

Benchmark results in configuration (1) after moments balance correction. Impact of n over: a\(E_R\), the Resultant Force relative error, b\(E_M\), the moment relative error, c\(E_c\), the interface compliance relative error, d\(E_d\), the displacement discontinuity relative error, e\(E_{\sigma }\), the maximum of Von Mises stress relative error, f\(E_U\), interface displacement field relative error, g\(E_S\), average Von Mises stress relative error, h CPU time (s)

Fig. 29
figure 29

Benchmark results in configuration (2) after moments balance correction. Impact of m over: a\(E_R\), the Resultant Force relative error, b\(E_M\), the moment relative error, c\(E_c\), the interface compliance relative error, d\(E_d\), the displacement discontinuity relative error, e\(E_{\sigma }\), the maximum of Von Mises stress relative error, f\(E_U\), interface displacement field relative error, g\(E_S\), average Von Mises stress relative error, h CPU time (s)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coniglio, S., Gogu, C. & Morlier, J. Weighted Average Continuity Approach and Moment Correction: New Strategies for Non-consistent Mesh Projection in Structural Mechanics. Arch Computat Methods Eng 26, 1415–1443 (2019). https://doi.org/10.1007/s11831-018-9285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-018-9285-0

Navigation