Skip to main content
Log in

Finite element algorithms for contact problems

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

The numerical treatment of contact problems involves the formulation of the geometry, the statement of interface laws, the variational formulation and the development of algorithms. In this paper we give an overview with regard to the different topics which are involved when contact problems have to be simulated. To be most general we will derive a geometrical model for contact which is valid for large deformations. Furthermore interface laws will be discussed for the normal and tangential stress components in the contact area. Different variational formulations can be applied to treat the variational inequalities due to contact. Several of these different techniques will be presented. Furthermore the discretization of a contact problem in time and space is of great importance and has to be chosen with regard to the nature of the contact problem. Thus the standard discretization schemes will be discussed as well as techiques to search for contact in case of large deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alart, P. and Curnier, A. (1991), “A Mixed Formulation for Frictional Contact Problems prone to Newton like Solution Methods”,Comp. Meth. Appl. Mech. Engng.,92, 353–375.

    Article  MATH  MathSciNet  Google Scholar 

  2. Babuska, I. and Rheinboldt, W. (1978), “Error Estimates for Adaptive Finite Element Computations”,J. Num. Analysis,15, 736–754.

    Article  MATH  MathSciNet  Google Scholar 

  3. Babuska, I., Strouboulis, T., Upadhyay, C. S., Gangaraj, S. K. and Copps, K. (1994), “Validation of A Posteriori Error Estimators by Numerical Approach”,Int. J. Num. Meth. Engng.,37, 1073–1123.

    Article  MATH  MathSciNet  Google Scholar 

  4. Barthold, F. J. and Bischoff, D. (1988), “Generalization of Newton type Methods to Contact Problems with Friction”,J. Mec. Theor. Appl., Special Issue: Numerical Methods in Mechanics of Contact Involving Friction, 97–110.

  5. Bathe, K. J. and Chaudhary, A. B. (1985), “A Solution Method for Planar and Axisymmetric Contact Problems”,Int. J. Num. Meth. Engng.,21, 65–88.

    Article  MATH  Google Scholar 

  6. Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. (1993),Nonlinear Programming. Theory and Algorithms, J. Wiley, New York.

    MATH  Google Scholar 

  7. Belytschko, T. and Neal, M. O. (1991), “Contact-Impact by the Pinball Algorithm with Penalty and Lagrangian Methods”,Int. J. Num. Meth. Engng.,31, 547–572.

    Article  MATH  Google Scholar 

  8. Bertsekas, D. P. (1984),Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York.

    Google Scholar 

  9. Björkman, G., Klarbring, A., Sjödin, B., Larsson, T. and Rönnqvist,M. (1995), “Sequential Quadratic Programming for Non-Linear Elastic Contact Problems”,Int. J. Num. Meth. Engng.,38, 137–165.

    Article  MATH  Google Scholar 

  10. Bowden, F. P. and Tabor, D. (1964),The Friction and Lubrication of Solids, Part II, Clarendon Press, Oxford.

    Google Scholar 

  11. Campos, L. T., Oden, J. T. and Kikuchi, N. (1982), “A Numerical Analysis of a Class of Contact Problems with Friction in Elastostatics”,Comp. Meth. Appl. Mech. Engng.,34, 821–845.

    Article  MATH  MathSciNet  Google Scholar 

  12. Chan, S. H. and Tuba, I. S. (1971), “A Finite Element Method for Contact Problems in Solid Bodies”,Int. J. Mech. Sci.,13, 615–639.

    Article  Google Scholar 

  13. Chaudhary, A. B. and Bathe, K. J. (1986), “A Solution Method for Static and Dynamic Analysis of Three-Dimensional Contact Problems with Friction”,Computer & Structures,24, 137–147.

    Article  Google Scholar 

  14. Conry, T. F. and Seireg, A. (1971), “A Mathematical Programming Method for Design of Elastic Bodies in Contact”,J. Appl. Mech.,38, 1293–1307.

    Google Scholar 

  15. Ciarlet, P. G. (1988),Mathematical Elasticity, North Holland, Amsterdam.

    MATH  Google Scholar 

  16. Cooper, M. G., Mikic, B. B. and Yovanovich, M. M. (1969), “Thermal Contact Conductance”,Int. J. of Heat and Mass Transfer,12, 279–300.

    Article  Google Scholar 

  17. Curnier, A. (1984), “A Theory of Friction”,Int. J. Solids Structures,20, 637–647.

    Article  MATH  Google Scholar 

  18. Curnier, A. and Alart, P. (1988), “A Generalized Newton Method for Contact Problems with Friction”,J. Mec. Theor. Appl., Special Issue: Numerical Methods in Mechanics of Contact Involving Friction, 67–82.

  19. Curnier, A., He, Q. C. and Telega, J. J. (1992), “Formulation of Unilateral Contact between two Elastic Bodies undergoing Finite Deformation”,C. R. Acad. Sci. Paris,314, 1–6.

    MATH  Google Scholar 

  20. Duvaut, G. and Lions, J. L. (1976),Inequalities in Mechanics and Physics, Springer-Verlag, Berlin.

    MATH  Google Scholar 

  21. Eterovic, A. L. and Bathe, K. J. (1991), “An Interface Interpolation Scheme for Quadratic Convergence in the Finite Element Analysis of Contact Problems”, inComputational Methods in Nonlinear Mechanics, eds. P. Wriggers, W. Wagner, Springer, Berlin.

    Google Scholar 

  22. Francavilla, A. and Zienkiewicz, O. C. (1975), “A Note on Numerical Computation of Elastic Contact Problems”,Int. J. Num. Meth. Engng.,9, 913–924.

    Article  Google Scholar 

  23. Fredriksson, B. (1976), “Finite Element Solution od Surface Nonlinearities in Structural Mechanics with Special Emphasis to Contact and Fracture Mechanics Problems”,Computer & Structures,6, 281–290.

    Article  MATH  Google Scholar 

  24. Giannokopoulos, A. E. (1989), “The Return Mapping Method for the Integration of Friction Constitutive Relations”,Computers & Structures,32, 157–168.

    Article  Google Scholar 

  25. Glowinski, R. and Le Tallec, P. (1984), “Finite Element Analysis in Nonlinear Incompressible Elasticity”, inFinite Element, Vol. V: Special Problems in Solid Mechanics, eds. J. T. Oden and G. F. Carey, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  26. Hallquist, J. O., Goudreau, G. L. and Benson, D. J. (1985), “Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computations”,Comp. Meth. Appl. Mech. Engng.,51, 107–137.

    Article  MATH  MathSciNet  Google Scholar 

  27. Hallquist, J. O., Schweizerhof, K. and Stillman, D. (1992), “Efficiency Refinements of Contact Strategies and Algorithms in Explicit FE Programming”, inProceedings of COMPLAS III, eds. D.R.J. Owen, E. Hinton, E. E. Oñate, Pineridge Press.

  28. Hansson, E. and Klarbring, A. (1990), “Rigid Contact Modelled by CAD Surface”,Eng. Computations,7, 344–348.

    Google Scholar 

  29. Heegaard, J.-H. and Curnier, A. (1993), “An Augmented Lagrangian Method for Discrete Large-Slip Contact Problems”,Int. J. Num. Meth. Engng.,36, 569–593.

    Article  MATH  MathSciNet  Google Scholar 

  30. Hertz, H. (1882), “Study on the Contact of Elastic Bodies”,J. Reine Angew. Math.,29, 156–171.

    Google Scholar 

  31. Hlavacek, I., Haslinger, J., Necas, J. and Lovisek, J. (1988),Solution of variational inequalities in mechanics, Springer, New York.

    MATH  Google Scholar 

  32. Hughes, T. R. J., Taylor, R. L., Sackman, J. L., Curnier, A. and Kanoknukulchai, W. (1976), “A Finite Element Method for a Class of Contact-Impact Problems”,Comp. Meth. Appl. Mech. Engng.,8, 249–276.

    Article  MATH  Google Scholar 

  33. Hughes, T. R. J., Taylor, R. L. and Kanoknukulchai, W. (1977), “A Finite Element Method for Large Displacement Contact and Impact Problems”, inFormulations and Computational Algorithms in FE Analysis, ed. K. J. Bathe, MIT-Press, Boston, 468–495.

    Google Scholar 

  34. Johannson, L. and Klarbring, A. (1992), “Thermoelastic Frictional Contact Problems: Modelling, Finite Element Approximation and Numerical Realization”, preprint.

  35. Johnson, C. (1987),Numerical solutions of partial differential equations by the finite element method, Cambridge Press, New York.

    Google Scholar 

  36. Johnson, C. and Hausbo, P. (1992), “Adaptive finite element methods in computational mechanics”,Comput. Meth. Appl. Mech. Engrg.,101, 143–181.

    Article  MATH  Google Scholar 

  37. Ju, W. and Taylor, R. L. (1988), “A Perturbed Lagrangian Formulation for the Finite Element Solution of Nonlinear Frictional Contact Problems”,Journal of Theoretical and Applied Mechanics,7, 1–14.

    Google Scholar 

  38. Kikuchi, N. (1982), “A Smoothing Technique for Reduced Integration Penalty Methods in Contact Problems”,Int. J. Num. Meth. Engng.,18, 343–350.

    Article  MATH  MathSciNet  Google Scholar 

  39. Kikuchi, N. and Oden, J. T. (1988),Contact Problems in Elasticity: A Study of Variational inequalities and Finite element Methods, SIAM, Philadelphia.

    MATH  Google Scholar 

  40. Klarbring, A. (1986), “A Mathematical Programming Approach to Three-dimensional Contact Problems with Friction”,Comp. Meth. Appl. Mech. Engng.,58, 175–200.

    Article  MATH  MathSciNet  Google Scholar 

  41. Klarbring, A. and Björkman, G. (1992), “Solution of Large Displacement Contact Problems with Friction using Newton’s Method for Generalized Equations”,Int J. Num. Meth. Engng.,34, 249–269.

    Article  MATH  Google Scholar 

  42. Kragelsky, I. V. (1956),Die Entwicklung der Wissenschaft von der Reibung, Verlag der Akademie der Wissenschaften der UdSSR, Moskau.

    Google Scholar 

  43. Kragelsky, I. V., Dobychin, M. N. and Kombalov, V. S. (1982),Friction and Wear—Calculation Methods, (Translated from The Russian by N. Standen), Pergamon Press.

  44. Laursen, T. A. and Simo, J. C. (1991), “On the Formulation and Numerical Treatment of Finite Deformation Frictional Contact Problems”, inComputational Methods in Nonlinear Mechanics, eds. P. Wriggers, W. Wagner, Springer, Berlin.

    Google Scholar 

  45. Laursen, T. A. and Simo, J. C. (1993a), “A Continuum-Based Finite Element Formulation for the Implicit Solution of Multibody, Large Deformation Frictional Contact Problems”,Int. J. Num. Meth. Engng.,36, 3451–3485.

    Article  MATH  MathSciNet  Google Scholar 

  46. Laursen, T. A. and Simo, J. C. (1993b), “Algorithmic Symmetrization of Coulomb Frictional Problems using Augmented Lagrangians”,Comp. Meth. Appl. Mech. Engng.,108, 133–146.

    Article  MATH  MathSciNet  Google Scholar 

  47. Lee, C. Y., Oden, J. T. and Ainsworth, M. (1991), “Local A Posteriori Error Estimates and Numerical Results for Contact Problems and Problems of Flow through Porous Media”, in:Nonlinear Computational Mechanics, eds. P. Wriggers and W. Wagner, 671–689, Springer, Berlin.

    Google Scholar 

  48. Luenberger, D. G. (1984),Linear and Nonlinear Programming, Addison-Wesley, Massachusetts.

    MATH  Google Scholar 

  49. Michalowski, R. and Mroz, Z. (1978), “Associated and Non-associated Sliding Rules in Contact Friction Problems”,Arch of Mechanics,30, 259–276.

    MATH  Google Scholar 

  50. Munjiza, A., Owen, D.R.J. and Bicanic, N.. (1995), “A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids”,Eng. Computations 12, 145–174.

    MATH  Google Scholar 

  51. Nour-Omid, B. and Wriggers, P.. (1986), “A Two-Level Iterative Method for the Solution of Contact Problems”,Comp. Meth. Appl. Mech. Engng.,54, 131–144.

    Article  MATH  MathSciNet  Google Scholar 

  52. Nour-Omid, B. and Wriggers, P.. (1987), “A Note on the Optimum Choice for Penalty Parameters”,Comm. Appl. Num. Meth,3, 581–585.

    Article  MATH  Google Scholar 

  53. Oden, J.T. (1981), “Exterior Penalty Methods for Contact Problems in Elasticity”, inNonlinear Finite Element Analysis in Structural Mechanics, eds, W. Wunderlich, E. Stein, K. J. Bathe, Springer, Berlin.

    Google Scholar 

  54. Oden, J.T. and Martins, J.A.C. (1986), “Models and Computational Methods for Dynamic Friction Phenomena”,Comp. Meth. Appl. Mech. Engng.,52, 527–634.

    Article  MathSciNet  Google Scholar 

  55. Oden, J.T. and Pires, E.B. (1983a), “Algorithms and Numerical Results for Finite Element Approximations of Contact Problems with Non-Classical Friction Laws”,Computer & Structures,19, 137–147.

    Article  Google Scholar 

  56. Oden, J.T., Pires, E.B. (1983b), “Nonlocal and Nonlinear Friction Laws and Variational Priciples for Contact Problems in Elasticity”,J. Appl. Mech.,50, 67–76.

    Article  MATH  MathSciNet  Google Scholar 

  57. Papadopoulos, P. and Taylor, R.L. (1992), “A Mixed Formulation for the Finite Element Solution of Contact Problems”,Comp. Meth. Appl. Mech. Engng.,94, 373–389.

    Article  MATH  Google Scholar 

  58. Parisch, H. (1989), “A Consistent Tangent Stiffness Matrix for Three-Dimensional Non-Linear Contact Analysis”,Int. J. Num. Meth. Engng.,28, 1803–1812.

    Article  MATH  Google Scholar 

  59. Simo, J.C., Wriggers, P. and Taylor, R.L. (1985), “A Perturbed Lagrangian Formulation for the Finite Element Solution of Contact Problems”,Comp. Meth. Appl. Mech. Engng.,50, 163–180.

    Article  MATH  MathSciNet  Google Scholar 

  60. Simo, J.C. and Taylor, R.L. (1985), “Consistent Tangent Operators for Rate-independant Elastoplasticity”,Comp. Meth. Appl. Mech. Engng.,48, 101–118.

    MATH  Google Scholar 

  61. Simo, J.C. and Laursen, T.A. (1992), “An Augmented Lagrangian Treatment of Contact Problems involving Friction”,Computers & Structures,42, 97–116.

    Article  MATH  MathSciNet  Google Scholar 

  62. Simo, J.C. and Miehe, C. (1992), “Associative Coupled Thermoplasticity at Finite Strains: Formulation, Numerical Analysis and Implementation”,Comp. Meth. Appl. Mech. Engng.,98, 41–104.

    Article  MATH  Google Scholar 

  63. Song, S. and Yovanovich, M.M. (1987), “Explicit Relative Contact Pressure Expression: Dependence upon Surface Roughness Parameters and Vickers Microhardness Coefficients.”,AIAA Paper 87-0152.

  64. Stadter, J.T. and Weiss, R.O. (1979), “Analysis of Contact through Finite Element Gaps”,Computers & Structures,10, 867–873.

    Article  MATH  Google Scholar 

  65. Tabor, D. (1981), “Friction—The Present State of Our Understanding,”J. Lubr. Technology,103, 169–179.

    Google Scholar 

  66. Verführt, R. (1993), “A Review of a posteriori error estimation and adaptive mesh-refinement techniques”, Technical Report, Institut für Angewandte Mathematik, Universität Zürich.

  67. Woo, K.L. and Thomas, T.R. (1980), “Contact of Rough Surfaces: A Review of Experimental Works”, Wear,58, 331–340.

    Article  Google Scholar 

  68. Williams, J.R. and Pentland, A. P. (1992), “Superquadrics and Modal Dynamics for Discrete Elements in Interactive Design”,Eng. Computations,9, 115–127.

    Google Scholar 

  69. Williams, J.R. and O’Connor R. (1995), “A Linear Complexity Intersection Algorithm for Discrete Element Simulation of Arbitrary Geometries”,Eng. Computations,12, 185–201.

    Google Scholar 

  70. Wilson, E.A. and Parsons, B. (1970), “Finite Element Analysis of Elastic Contact Problems using Differential Displacements”,Int. J. Num. Meth. Engng.,2, 387–395.

    Article  Google Scholar 

  71. Wriggers, P. and Simo, J.C. (1985), “A Note on Tangent Stiffness for Fully Nonlinear Contact Problems”,Communications in Applied Numerical Methods,1, 199–203.

    Article  MATH  Google Scholar 

  72. Wriggers, P., Simo, J.C. and Taylor, R.L. (1985), “Penalty and Augmented Lagrangian Formulations for Contact Problems”, inProceedings of NUMETA 85 Conference, eds. J. Middleton & G.N. Pande, Balkema, Rotterdam.

    Google Scholar 

  73. Wriggers, P., Wagner, W. and Stein, E. (1987), “Algorithms for Nonlinear Contact Constraints with Application to Stability Problems of Rods and Shells”,Computational Mechanics,2, 215–230.

    Article  MATH  Google Scholar 

  74. Wriggers, P. (1987), “On Consistent Tangent Matrices for Frictional Contact Problems,” inProceedings of NUMETA 87 Conference, eds. J. Middleton, G.N. Pande, Nijhoff, Dorbrecht.

    Google Scholar 

  75. Wriggers, P. and Wagner, W. (1988), “A Solution Method for the Postcritical Analysis of Contact Problems”, inThe Mathematics of, Finite Elements and Applications VI, Proceedings of MAFLEAP 87, ed. J. Whiteman, Academic Press, London.

    Google Scholar 

  76. Wriggers, P., Vu Van, T. and Stein, E. (1990), “Finite Element Formulation of Large Deformation Impact-Contact Problems with Friction”,Computers & Structures,37, 319–331.

    Article  MATH  Google Scholar 

  77. Wriggers, P. and Miehe, C. (1992), “Recent Advances in the Simulation of Thermomechanical Contact Processes”, inProceedings of COMPLAS III, eds. D.R.J. Owen, E. Hinton, E. E. Onate, Pineridge Press.

  78. Wriggers, P. (1993), “Continuum Mechanics, Nonlinear Finite Element Techniques and Computational Stability”, inProgress in Computational Analysis of Inelastic Structures, ed. E. Stein, Springer, Wien.

    Google Scholar 

  79. Wriggers, P., Zavarise, G. (1993), “On the Application of Augmented Lagrangian Techniques for Nonlinear Constitutive Laws in Contact Interfaces”,Comm. Num. Meth. Engng. 9, 815–824, 1993.

    Article  MATH  Google Scholar 

  80. Wriggers, P. and Imhof, M. (1993), “On the, Treatment of Nonlinear Unilateral Contact Problems”,Ing. Archiv,63, 116–129.

    MATH  Google Scholar 

  81. Wriggers, P. and Zavarise, G. (1993), “Thermomechanical Contact—A Rigorous but Simple Numerical Approach”,Computers & Structures,46, 47–53.

    Article  Google Scholar 

  82. Wriggers, P. and Miehe C. (1994), “Contact Constraints within Coupled Thermomechanical Analysis—A Finite Element Model”,Comp. Meth. Appl. Mech. Engng.,113, 301–319.

    Article  MATH  MathSciNet  Google Scholar 

  83. Wriggers, P., Scherf, O. and Carstensen, C. (1994), “Adaptive Techniques for the Contact of Elastic Bodies”, inRecent Developments in Finite Element Analysis, eds. T.J.R. Hughes, E. Oñate, O.C. Zienkiewicz, CIMNE, Barcelona.

    Google Scholar 

  84. Wriggers, P. and Scherf, O. (1995), “An adaptive finite element method for elastoplastic contact problems”, inProceedings of COMPLAS 4, eds. R.D. Owen, E. Hinton, E. Oñate, Pineridge Press, Swansea.

    Google Scholar 

  85. Zavarise, G. (1991), “Problemi termomeccanici di contatto—aspetti fisici e computazionali”,Ph.D. Thesis, Ist. di Scienza e Tecnica delle Costruzioni, Univ. of Padua, Italy.

    Google Scholar 

  86. Zavarise, G., Schrefler, B.A. and Wriggers, P. (1992), “Consistent Formulation for Thermomechanical Contact based on Microscopic Interface Laws”, inProceedings of COMPLAS III, eds. D.R.J. Owen, E. Hinton, E. E. Oñate, Pineridge Press.

  87. Zavarise, G., Wriggers, P., Stein, E. and Schrefler, B.A. (1992a), “Real Contact Mechanisms and Finite Element Formulation—A Coupled Thermomechanical Approach”Int. J. Num. Meth. Engng.,35, 767–786, 1992.

    Article  MATH  Google Scholar 

  88. Zavarise, G., Wriggers, P., Stein, E. and Schrefler, B.A. (1992b), “A Numerical Model for Thermomechanical Contact based on Microscopic Interface Laws”,Mech. Res. Comm.,19, 173–182.

    Article  MATH  Google Scholar 

  89. Zavarise, G. and Wriggers, P. (1995), “Elastoplastic Contact, Problems Solved by the Cross-Constraint Method”, inProceedings of COMPLAS IV, eds. D.R.J. Owen, E. Hinton, E. E. Oñate, Pineridge Press.

  90. Zavarise, G., Wriggers, P. and Schrefler, B.A. (1995a), “On Augmented Lagrangian Algorithms for Thermomechanical Contact Problems with Friction”, to appear in IJNME.

  91. Zavarise, G., Wriggers, P. and Schrefler, B.A. (1995b), “A New Method for Solving Contact Problems”, submitted to IJNME.

  92. Zienkiewicz, O.C. and Zhu, J.Z. (1987), “A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis,”Int. J. Num. Meth. Engng.,24, 337–357.

    Article  MATH  MathSciNet  Google Scholar 

  93. Zienkiewicz, O.C. and Taylor, R.L. (1989),The Finite Element Method, 4th edn., Mc Graw-Hill, London.

    Google Scholar 

  94. Zhong, Z.-H. and Nilsson, L. (1989), “A Contact Searching Algorithm for General Contact Problems”,Computers & Structures,33, 197–209.

    Article  MATH  Google Scholar 

  95. Zhong, Z.-H. (1993),Finite Element Procedures for Contact-Impact Problems, Oxford University Press, Oxford.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wriggers, P. Finite element algorithms for contact problems. ARCO 2, 1–49 (1995). https://doi.org/10.1007/BF02736195

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736195

Keywords

Navigation