Skip to main content
Log in

On the Theories and Numerics of Continuum Models for Adaptation Processes in Biological Tissues

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

Computational continuum mechanics have been used for a long time to deal with the mechanics of materials. During the last decades researches have been using many of the theoretical models and numerical approaches of classical materials to deal with biological tissue which, in many senses, are a much more sophisticated material. We aim to review the last achievements of continuum models and numerical approaches on adaptation processes in biological tissues. In this review, we are looking, in particular, at growth in terms of changes of density and/or volume as, e.g., in collagen remodeling, wound healing, arterial thickening, etc. Furthermore, we point out some of the most relevant limitations of the current state-of-the-art in terms of these well established computational continuum models. In connection with these limitations, we will finish by discussing the trend lines of future work in the field of modeling biological adaptation, focusing on the computational approaches and mechanics that could overcome the current drawbacks. We would also like to attract the attention of all those researchers in classical materials (metal, alloys, composites, etc), to point out how similar the continuum and computational models between our fields are. We hope we can motivate them for getting their expertize in this challenging field of research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alastrue V, Calvo B, Pena E, Doblare M (2006) Biomechanical modeling of refractive corneal surgery. J Biomech Eng 128(1):150–160

    Article  Google Scholar 

  2. Alastrue V, Martinez MA, Doblare M, Menzel A (2009) Anisotropic micro-sphere-based finite elasticity applied to blood vessel modelling. J Mech Phys Solids 57(1):178–203

    Article  MATH  Google Scholar 

  3. Ambrosi D, Ateshian GA, Arruda EM, Cowin SC, Dumais J, Goriely A, Holzapfel GA, Humphrey JD, Kemkemer R, Kuhl E, Olberding JE, Taber LA, Garikipati K (2011) Perspectives on biological growth and remodeling. J Mech Phys Solids 59(4):863–883

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5):857–899

    Article  MATH  Google Scholar 

  5. Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65(13):2167–2202

  6. Ateshian GA (2007) On the theory of reactive mixtures for modeling biological growth. Biomech Model Mechanobiol 6(6):423–445

    Article  Google Scholar 

  7. Ateshian GA, Maas S, Weiss JA (2013) Multiphasic finite element framework for modeling hydrated mixtures with multiple neutral and charged solutes. J Biomech Eng 135(11):1110011–11100111

    Google Scholar 

  8. Bažant P, Oh BH (1986) Efficient numerical integration on the surface of a sphere. Z Angew Math Mech 66(1):37–49

    Article  MathSciNet  MATH  Google Scholar 

  9. Bayly PV, Okamoto RJ, Xu G, Shi Y, Taber LA (2013) A cortical folding model incorporating stress-dependent growth explains gyral wavelengths and stress patterns in the developing brain. Phys Biol 10(1):016005

    Article  Google Scholar 

  10. Bayly PV, Taber LA, Kroenke CD (2014) Mechanical forces in cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater 29(0):568–581

  11. Bazant ZP, Oh BH (1985) Microplane model for progressive fracture of concrete and rock. J Eng Mech-ASCE 111(4):559–582

    Article  Google Scholar 

  12. Bazant ZP, Prat PC (1988) Microplane model for brittle-plastic material: I. Theory. J Eng Mech-ASCE 114(10):1672–1687

    Article  Google Scholar 

  13. Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(14):3–47

    Article  MATH  Google Scholar 

  14. Amar MB, Goriely A (2005) Growth and instability in elastic tissues. J Mech Phys Solids 53(10):2284–2319

    Article  MathSciNet  MATH  Google Scholar 

  15. Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating human systems. Proc Natl Acad Sci USA 99(Suppl. 3):7280–7287

    Article  Google Scholar 

  16. Boyle CJ, Lennon AB, Early M, Kelly DJ, Lally C, Prendergast PJ (2010) Computational simulation methodologies for mechanobiological modelling: a cell-centred approach to neointima development in stents. Philos Trans R Soc A 368(1921):2919–2935

    Article  Google Scholar 

  17. Budday S, Raybaud C, Kuhl E (2014a) A mechanical model predicts morphological abnormalities in the developing human brain. Sci Rep 4:5644

    Article  Google Scholar 

  18. Budday S, Steinmann P, Kuhl E (2014b) The role of mechanics during brain development. J Mech Phys Solids 72:75–92

    Article  MathSciNet  MATH  Google Scholar 

  19. Buganza-Tepole A, Kuhl E (2013) Systems-based approaches toward wound healing. Pediatr Res 73(4–2):553–563

    Article  Google Scholar 

  20. Buganza-Tepole A, Kuhl E (year) Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing. doi:10.1080/10255842.2014.980821

  21. Burgert I, Fratzl P (2007) Mechanics of the expanding cell wall. In: Verbelen J-P, Vissenberg K (eds) Plant cell monographs, vol 6. Springer, Berlin, pp 191–215

    Google Scholar 

  22. Carol I, Jirasek M, Bazant Z (2001) A thermodynamically consistent approach to microplane theory. Part I. Free energy and consistent microplane stresses. Int J Solids Struct 38(17):2921–2931

    Article  MATH  Google Scholar 

  23. Chu J-W, Voth GA (2005) Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis. Proc Natl Acad Sci USA 102(37):13111–13116

    Article  Google Scholar 

  24. Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6(3):313–326

    Article  MathSciNet  MATH  Google Scholar 

  25. Dai GH, Kaazempur-Mofrad MR, Natarajan S, Zhang YZ, Vaughn S, Blackman BR, Kamm RD, Garcia-Cardena G, Gimbrone MA (2004) Distinct endothelial phenotypes evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant regions of human vasculature. Proc Natl Acad Sci USA 101(41):14871–14876

    Article  Google Scholar 

  26. De R, Safran SA (2008) Dynamical theory of active cellular response to external stress. Phys Rev E 78(3):031923

    Article  Google Scholar 

  27. De R, Zemel A, Safran SA (2007) Dynamics of cell orientation. Nat Phys 3(9):655–659

    Article  Google Scholar 

  28. Deen WM (2011) Analysis of transport phenomena. Oxford University Press, Oxford

    Google Scholar 

  29. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  Google Scholar 

  30. Driessen NJB, Peters GWM, Huyghe JM, Bouten CVC, Baaijens FPT (2003) Remodelling of continuously distributed collagen fibres in soft connective tissues. J Biomech 36(8):1151–1158

  31. Driessen NJB, Cox MAJ, Bouten CVC, Baaijens FPT (2008) Remodelling of the angular collagen fiber distribution in cardiovascular tissues. Biomech Model Mechanobiol 7(2):93–103

    Article  Google Scholar 

  32. Elkin BS, Shaik MA, Morrison B (2010) Fixed negative charge and the donnan effect: adescription of the driving forces associated with brain tissue swelling andoedema. Philos Trans R Soc A 368(1912):585–603

    Article  Google Scholar 

  33. Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16(78):951–978

    Article  MATH  Google Scholar 

  34. Figueroa CA, Baek S, Taylor CA, Humphrey JD (2009) A computational framework for fluid-solid-growth modeling in cardiovascular simulations. Comput Methods Appl Mech Eng 198(45–46):3583–3602

    Article  MathSciNet  MATH  Google Scholar 

  35. Fountain H (2012) http://www.nytimes.com/

  36. Fung YC (1990) Biomechanics: mechanical properties of living tissues. Springer, New York

    Book  Google Scholar 

  37. Fung YC, Liu SQ (1989) Change of residual strains in arteries due to hypertrophy caused by aortic constriction. Circ Res 65(5):1340–1349

    Article  Google Scholar 

  38. Ganghoffer JF (2010) Mechanical modeling of growth considering domain variation. Part II: volumetric and surface growth involving eshelby tensors. J Mech Phys Solids 58(9):1434–1459

  39. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15–35

    Article  Google Scholar 

  40. Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4):352–363

    Article  Google Scholar 

  41. Gleason RL, Humphrey JD (2005) Effects of a sustained extension on arterial growth and remodeling: a theoretical study. J Biomech 38(6):1255–1261

    Article  Google Scholar 

  42. Goektepe S, Abilez OJ, Kuhl E (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58(10):1661–1680

    Article  MathSciNet  MATH  Google Scholar 

  43. Guo X, Kassab GS (2003) Variation of mechanical properties along the length of the aorta in c57bl/6 mice. Am J Physiol Heart Circ Physiol 285(6):H2614–H2622

    Article  Google Scholar 

  44. Guilak F, Mow VC (2000) The mechanical environment of the chondrocyte: a biphasic finite element model of cell–matrix interactions in articular cartilage. J Biomech 33(12):1633–1673

    Google Scholar 

  45. Goektepe S, Abilez OJ, Kuhl E (2010) A generic approach towards finite growth with examples of athlete’s heart, cardiac dilation, and cardiac wall thickening. J Mech Phys Solids 58(10):1661–1680

  46. Goektepe SA, Menzel EK (2014) The generalized hill model: a kinematic approach towards active muscle contraction. J Mech Phys Solids 72:20–39

    Article  MathSciNet  MATH  Google Scholar 

  47. Harrigan TP, Hamilton JJ (1992) An analytical and numerical study of the stability of bone remodeling theories—dependence on microstructural stimulus. J Biomech 25(5):477–488

    Article  Google Scholar 

  48. Heidenreich EA, Ferrero JM, Doblare M, Rodriguez JF (2010) Adaptive macro finite elements for the numerical solution of monodomain equations in cardiac electrophysiology. Ann Biomed Eng 38(7):2331–2345

    Article  Google Scholar 

  49. Himpel G, Kuhl E, Menzel A, Steinmann P (2005) Computational modelling of isotropic multiplicative growth. CMES 8(2):119–134

    MATH  Google Scholar 

  50. Himpel G, Menzel A, Kuhl E, Steinmann P (2008) Time-dependent fibre reorientation of transversely isotropic continua—finite element formulation and consistent linearization. Int J Numer Methods Eng 73(10):1413–1433

    Article  MathSciNet  MATH  Google Scholar 

  51. Holzapfel GA (2004) Encyclopedia of computational mechanics,vol 2. Wiley, p 28

  52. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1):1–48

    Article  MathSciNet  MATH  Google Scholar 

  53. Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23(1–2):1–162

    Google Scholar 

  54. Humphrey JD (2003) Continuum biomechanics of soft biological tissues. Proc R Soc A math Phys Eng Sci 459(2029):3–46

    Article  MathSciNet  MATH  Google Scholar 

  55. Humphrey JD (2009) Need for a continuum biochemomechanical theory of soft tissue and cellular growth and remodeling. Cellular and Tissue Levels. Springer Vienna, In Biomechanical Modelling at the Molecular

  56. Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12(3):407–430

    Article  MathSciNet  MATH  Google Scholar 

  57. Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanobiol 2(2):109–126

    Article  Google Scholar 

  58. Hurschler C, Loitz-Ramage B, Vandervir R Jr (1997) A structurally based stress–stretch relationship for tendon and ligament. J Biomech Eng 119:392–399

    Article  Google Scholar 

  59. HurtadoJE, Barbat AH (1998) Monte carlo techniques in computational stochastic mechanics. Arch Comput Methods Eng 5(1):3–29. ISSN 1134–3060

  60. Imatani S, Maugin GA (2002) A constitutive model for material growth and its application to three-dimensional finite element analysis. Mech Res Commun 29(6):477–483

    Article  MathSciNet  MATH  Google Scholar 

  61. Ingber DE (2003) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116(7):1157–1173

    Article  Google Scholar 

  62. Jiang Y, Pjesivac-Grbovic J, Cantrell C (2005) A multiscale model for avascular tumor growth. Biophys J 89(6):3884–3894

    Article  Google Scholar 

  63. Kardas D, Nackenhorst U, Balzani D (2012) Computational model for the cell-mechanical response of the osteocyte cytoskeleton based on self-stabilizing tensegrity structures. Biomech Model Mechanobiol 12(1):167–183

  64. Karsaj I, Sansour C, Soric J (2009) The modelling of fibre reorientation in soft tissue. Biomech Model Mechanobiol 8(5):359–370

    Article  Google Scholar 

  65. Kim T, Hwang W, Lee H, Kamm RD (2009) Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput Biol 5(7):e1000439

    Article  Google Scholar 

  66. Kim Y, Stolarska MA, Othmer HG (2011) The role of the microenvironment in tumor growth and invasion. Prog Biophys Mol Biol 106(2):353–379

    Article  Google Scholar 

  67. Klepach D, Lee CL, Wenk JF, Ratcliffe MB, Zohdi TI, Navia JA, Kassab GS, Kuhl E, Guccione JM (2012) Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration. Mech Res Commun 42:134–141

    Article  Google Scholar 

  68. Klisch SM, Sah RL, Hoger A (2005) A cartilage growth mixture model for infinitesimal strains: solutions of boundary-value problems related to in vitro growth experiments. Biomech Model Mechanobiol 3(4):209–223

    Article  Google Scholar 

  69. Kratky O, Porod G (1949) Rontgenuntersuchung geloster fadenmolekule. Recl Trav Cnim Pay B 68(12):1106–1122

    Article  Google Scholar 

  70. Kuhl E, Steinmann P (2003) On spatial and material settings of thermo- Hyperelastodynamics for open systems. Acta Mech 160(3–4):179–217

  71. Kuhl E, Steinmann P (2003) Theory and numerics of geometrically non-linear open system mechanics. Int J Numer Methods Eng 58(11):1593–1615

    Article  MathSciNet  MATH  Google Scholar 

  72. Kuhl E, Steinmann P, Carol I (2001) A thermodynamically consistent approach to microplane theory. Part II. Dissipation and inelastic constitutive modeling. Int J Solids Struct 38(17):2933–2952

    Article  MATH  Google Scholar 

  73. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth—a critical review, a classification of concepts and two new consistent approaches. Comput Mech 32(1–2):71–88

    Article  MATH  Google Scholar 

  74. Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: mechanically induced reorientation of a transversely isotropic chain network. J Mech Phys Solids 53(7):1552–1573

    Article  MathSciNet  MATH  Google Scholar 

  75. Lai WM, Hou JS, Mow VC (1991) A triphasic theory for the swelling and deformation behaviors of articular cartilage. J Biomech Eng 113(3):245–258

    Article  Google Scholar 

  76. Lee EH (1969) Elastic–plastic deformation at finite strains. J Appl Mech 36(1):1–6

    Article  MATH  Google Scholar 

  77. Lee LC, Genet M, Acevedo-Bolton G, Ordovas K, Guccione JM, Kuhl E (2014) A computational model that predicts reverse growth in response to mechanical unloading. Biomech Model Mechanobiol. doi:10.1007/s10237-014-0598-0

  78. Lubarda VA, Hoger A (2002) On the mechanics of solids with a growing mass. Int J Solids Struct 39(18):4627–4664

    Article  MATH  Google Scholar 

  79. Marsden JE, Hughes TJR (1994) Mathematical foundations of elasticity. Dover Publications, NY

    MATH  Google Scholar 

  80. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry: a basic exposition of classical mechanical systems. Springer, Berlin

    Book  MATH  Google Scholar 

  81. Maurin B, Canadas P, Baudriller H, Montcourrier P, Bettache N (2008) Mechanical model of cytoskeleton structuration during cell adhesion and spreading. J Biomech 41(9):2036–2041

    Article  Google Scholar 

  82. McCulloch A, Bassingthwaighte J, Hunter P, Noble D (1998) Computational biology of the heart: from structure to function. Prog Biophys Mol Biol 69(2–3):153–155

    Google Scholar 

  83. Menzel A (2004) Modelling of anisotropic growth in biological tissues. Biomech Model Mechanobiol 3(3):147–171

    Article  Google Scholar 

  84. Menzel A (2007) A fibre reorientation model for orthotropic multiplicative growth. Biomech Model Mechanobiol 6:303–320

    Article  Google Scholar 

  85. Menzel A, Waffenschmidt T (2009) A microsphere-based remodelling formulation for anisotropic biological tissues. Philos Trans R Soc A 367(1902):3499–3523

    Article  MathSciNet  MATH  Google Scholar 

  86. Merks RMH, Glazier JA (2006) Dynamic mechanisms of blood vessel growth. Nonlinearity 19(1):C1

    Article  MathSciNet  MATH  Google Scholar 

  87. Merks RMH, Glazier JA (2005) A cell-centered approach to developmental biology. Phys A Stat Mech Appl 352(1):113–130

    Article  Google Scholar 

  88. Miehe C, Göktepe S, Lulei F (2004) A micro-macro approach to rubber-like materials-part I: the non-affine micro-sphere model of rubber elasticity. J Mech Phys Solids 52(11):2617–2660

    Article  MathSciNet  MATH  Google Scholar 

  89. Miehe C (1996) Numerical computation of algorithmic (consistent) tangent moduli in large-strain computational inelasticity. Comput Methods Appl Mech Eng 134(3–4):223–240

    Article  MathSciNet  MATH  Google Scholar 

  90. Mofrad MRK, Kamm RD (2006) Cytoskeletal mechanics models and measurements. Cambridge University Press, Cambridge

    Book  Google Scholar 

  91. Moulton DE, Goriely A, Chirat R (2012) Mechanical growth and morphogenesis of seashells. J Theor Biol 311:69–79

    Article  MathSciNet  Google Scholar 

  92. Murtada SI, Kroon M, Holzapfel GA (2010) A calcium-driven mechanochemical model for prediction of force generation in smooth muscle. Biomech Model Mechanobiol 9(6):749–762

    Article  Google Scholar 

  93. Natali AN, Pavan PG, Carniel EL, Lucisano ME, Taglialavoro G (2005) Anisotropic elasto-damage constitutive model for the biomechanical analysis of tendons. Med Eng Phys 27(3):209–214

    Article  Google Scholar 

  94. Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79(3):763–813

    Article  MathSciNet  MATH  Google Scholar 

  95. Ogden RW (2003) Nonlinear elasticity, anisotropy, material stability and residual stresses in soft tissues. In: Holzapfel GA, Ogden RW (eds) Biomechanics of soft tissue in cardiovascular systems, number 441 in CISM courses and lectures. Springer, Berlin, pp 65–108

    Chapter  Google Scholar 

  96. Owens GK, Rabinovitch PS, Schwartz SM (1981) Smooth-muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci 78(12):7759–7763

    Article  Google Scholar 

  97. Pandolfi A, Manganiello F (2006) A model for the human cornea: constitutive formulation and numerical analysis. Biomech Model Mechanobiol 5(4):237–246

    Article  Google Scholar 

  98. Peña E, Calvo B, Martinez MA, Doblare M (2006) A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint. J Biomech 39(9):1686–1701

    Article  Google Scholar 

  99. Rausch MK, Dam A, Göktepe S, Abilez OJ, Kuhl E (2011) Computational modeling of growth: systemic and pulmonary hypertension in the heart. Biomech Model Mechanobiol 10:799–811

    Article  Google Scholar 

  100. Rice JC, COWIN SC, BOWMAN JA (1988) On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech 21(2):155–168

    Article  Google Scholar 

  101. Rodriguez EK, Hoger A, McCulloch AD (1994) Stress-dependent finite growth in soft elastic tissues. J Biomech 27(4):455–467

    Article  Google Scholar 

  102. Saez P, Pena E, Martinez MA, Kuhl E (2012) Mathematical modeling of collagen turnover in biological tissue. J Math Bio 67(6–7):1765–1793

  103. Skalak R (1982) Growth as a finite displacement field. In: Carlson DE, Shields RT (eds) IUTAM symposium on finite elasticity. Martinus Nijhoff, Leiden, pp 348–355

    Google Scholar 

  104. Skalak R, Dasgupta G, Moss M, Otten E, Dullemeijer P, Vilmann H (1982) Analytical description of growth. J Theor Biol 94(3):555–577

    Article  MathSciNet  Google Scholar 

  105. Steinmann P (1999) Formulation and computation of geometrically non-linear gradient damage. Int J Numer Methods Eng 46(5):757–779

  106. Sukumar N (2004) Construction of polygonal interpolants: a maximum entropy approach. Int J Numer Method Eng 61(12):2159–2181

    Article  MathSciNet  MATH  Google Scholar 

  107. Saez P, Pena E, Doblare M, Martinez MA (2013a) Hierarchical micro-adaptation of biological structures by mechanical stimuli. Int J Solids Struct 50(14–15):2353–2370

  108. Saez P, Pena E, Martinez MA (2014a) A structural approach including the behavior of collagen cross-links to model patient-specific human carotid arteries. Ann Biomed Eng 42(6):1158–1169

  109. Saez P, Pena E, Martinez MA, Kuhl E (2014b) Computational modeling of hypertensive growth in the human carotid artery. Comput Mech 53(6):1183–1196

  110. Saez P, Pena E, Tarbell JM, Martinez MA (2015) Computational model of collagen turnover in carotid arteries during hypertension. Int J Numer Method Biomed Eng (in press)

  111. Taber LA (1995) Biomechanics of growth, remodeling, and morphogenesis. Appl Mech Rev 48:487–545

    Article  Google Scholar 

  112. Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180(4):343–357

    Article  Google Scholar 

  113. Buganza TA, Ploch CJ, Wong J, Gosain AK, Kuhl E (2011) Growing skin: a computational model for skin expansion in reconstructive surgery. J Mech Phys Solids 59(10):2177–2190

    Article  MathSciNet  MATH  Google Scholar 

  114. Valentin A, Humphrey JD (2009) Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling. Philos R Soc Lond A Math Phys Eng Sci 367(1902):3585–3606

    Article  MathSciNet  MATH  Google Scholar 

  115. Valero C, Javierre E, Garcia-Aznar JM, Gmez-Benito MJ (2014) A cell-regulatory mechanism involving feedback between contraction and tissue formation guides wound healing progression. PLoS One 9(3):e92774

    Article  Google Scholar 

  116. Waffenschmidt T, Menzel A, Kuhl E (2012) Anisotropic density growth of bone—a computational micro-sphere approach. Int J Solids Struct 49(14):1928–1946

    Article  Google Scholar 

  117. Weinans H, Huiskes R, Grootenboer HJ (1992) The behavior of adaptive bone-remodeling simulation models. J Biomech 25(12):1425–1441

    Article  Google Scholar 

  118. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27(3):339–360

    Article  Google Scholar 

  119. Welty J, Wicks CE, Rorrer GL, Wilson RE (2008) Fundamentals of momentum. Heat and mass transfer. Wiley, London

    Google Scholar 

  120. Wong J, Goktepe S, Kuhl E (2011) Computational modeling of electrochemical coupling: a novel finite element approach towards ionic models for cardiac electrophysiology. Comput Method Appl M 200(45–46):3139–3158

    Article  MathSciNet  MATH  Google Scholar 

  121. Zoellner AM, Holland MA, Honda KS, Gosain AK, Kuhl E (2013) Growth on demand: reviewing the mechanobiology of stretched skin. J Mech Behav Biomed Mater 28:495–509

    Article  Google Scholar 

Download references

Acknowledgments

P. Saez acknowledges support from the Spanish Ministry of Research and Innovation through the Grant BES-009-028593 through which part of the research was conducted. P.S. also acknowledge Prof. Martinez and Prof. Pena for discussion and supervision. A special acknowledge also for Prof. Kuhl for many discussions and help during the last years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Saez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saez, P. On the Theories and Numerics of Continuum Models for Adaptation Processes in Biological Tissues. Arch Computat Methods Eng 23, 301–322 (2016). https://doi.org/10.1007/s11831-014-9142-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-014-9142-8

Navigation