Skip to main content
Log in

Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This paper considers the analysis and control of fluid flows using tools from dynamical systems and control theory. The employed tools are derived from the spectral analysis of various linear operators associated with the Navier–Stokes equations. Spectral decomposition of the linearized Navier-Stokes operator, the Koopman operator, the spatial correlation operator and the Hankel operator provide a means to gain physical insight into the dynamics of complex flows and enables the construction of low-dimensional models suitable for control design. Since the discretization of the Navier-Stokes equations often leads to very large-scale dynamical systems, matrix-free and in some cases iterative techniques have to be employed to solve the eigenvalue problem. The common theme of the numerical algorithms is the use of direct numerical simulations. The theory and the algorithms are exemplified on flow over a flat plate and a jet in crossflow, as prototypes for the laminar-turbulent transition and three-dimensional vortex shedding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Algorithm 1
Fig. 29
Fig. 30
Algorithm 2
Fig. 31
Algorithm 3

Similar content being viewed by others

Notes

  1. Friction drag constitutes more than half of the total aircraft drag, with 18 %,4 %,3 % and 3 % for wing, horizontal tail plane, fin and nacelles, respectively. If the flow were laminar on 40 % of the surfaces, the total drag would be reduced by 16 % [92].

  2. Similar to bounded states in quantum mechanics, resulting in a discrete energy spectrum.

  3. A note on the basic notation used through out the paper is appropriate at this point. Square brackets [ and ] are used to construct matrices and vectors, i.e. [1 2]T is a column vector ∈ℝ2×1 which is abbreviated as ℝ2. Curved brackets ( and ) are used surrounding lists of entries, delineated by commas as an alternative method to construct (column) vectors, (1,2)=[1 2]T.

  4. The analysis requires some measure theory, but here we make no attempt to be mathematically precise and refer to [56] for rigorous treatment on the subject. Most importantly, we need to introduce an invariant measure, essentially meaning that we can find a measure μ such that the value of a integral,

    $$ \int_\mathbb{U}a(\mathbf{u}) d\mu= \int_\mathbb{U}a \bigl(\mathbf {g}(\mathbf {u}) \bigr)d\mu. $$

    is invariant. Henceforth we drop μ and use the notation =d u. Such a measure can always be found [56] if g satisfies certain properties (that g is a measure-preserving operator). Observables are thus elements in the space

    $$ L^2(\mathbb{U}) = \biggl\{a:\mathbb{U}\rightarrow\mathbb{R} \, |\, \int_\mathbb{U}|a|^2 d\mathbf {u}< \infty \biggr\}. $$
  5. Here, we consider only the point spectrum of U, see [65] for the continuous spectrum.

  6. In the literature, \(\hat{n}\) is refereed to as the McMillan degree.

  7. The eigenvectors are the same if the sampling period Δt is chosen properly, i.e. so that it reflects the characteristic time scale of the physical structures in the flow. More specifically, to avoid aliasing Δt must be small enough such that two sampling points in one period of the highest frequency mode are obtained (the Nyquist criterion).

References

  1. Ahuja S (2009) Reduction methods for feedback stabilization of fluid flows. PhD thesis, Princeton University, New Jersey

  2. Åkervik E, Brandt L, Henningson DS, Hœpffner J, Marxen O, Schlatter P (2006) Steady solutions of the Navier-Stokes equations by selective frequency damping. Phys Fluids 18(068102):1–4

    Google Scholar 

  3. Åkervik E, Ehrenstein U, Gallaire F, Henningson DS (2008) Global two-dimensional stability measures of the flat plate boundary-layer flow. Eur J Mech B, Fluids 27:501–513

    Article  MathSciNet  MATH  Google Scholar 

  4. Åkervik E, Hœpffner J, Ehrenstein U, Henningson DS (2007) Optimal growth, model reduction and control in a separated boundary-layer flow using global eigenmodes. J Fluid Mech 579:305–314

    Article  MathSciNet  MATH  Google Scholar 

  5. Alam M, Sandham ND (2000) Direct numerical simulation of laminar separation bubbles with turbulent reattachment. J Fluid Mech 403:223–250. doi:10.1017/S0022112099007119

    Article  MATH  Google Scholar 

  6. Anderson B, Moore J (1990) Optimal control: linear quadratic methods. Prentice Hall, New York

    MATH  Google Scholar 

  7. Antoulas CA (2005) Approximation of large-scale dynamical systems. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  8. Arnoldi WE (1951) The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q Appl Math 9:17–29

    MathSciNet  MATH  Google Scholar 

  9. Bagheri S, Åkervik E, Brandt L, Henningson DS (2009) Matrix-free methods for the stability and control of boundary layers. AIAA J 47:1057–1068

    Article  Google Scholar 

  10. Bagheri S, Brandt L, Henningson DS (2009) Input-output analysis, model reduction and control design of the flat-plate boundary layer. J Fluid Mech 620:263–298

    Article  MathSciNet  MATH  Google Scholar 

  11. Bagheri S, Hœpffner J, Schmid PJ, Henningson DS (2009) Input-output analysis and control design applied to a linear model of spatially developing flows. Appl Mech Rev 62(2). doi:10.1115/1.3077635

  12. Bagheri S, Schlatter P, Schmid PJ, Henningson DS (2009) Global stability of a jet in crossflow. J Fluid Mech 624:33–44

    Article  MathSciNet  MATH  Google Scholar 

  13. Barkley D (2006) Linear analysis of the cylinder wake mean flow. Europhys Lett 75:750–756

    Article  MathSciNet  Google Scholar 

  14. Barkley D, Gomes MG, Henderson RD (2002) Three-dimensional instability in flow over a backward-facing step. J Fluid Mech 473:167–190

    Article  MathSciNet  MATH  Google Scholar 

  15. Batchelor G (1967) An introduction to fluid dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  16. Bewley TR (2001) Flow control: new challenges for a new renaissance. Prog Aerosp Sci 37:21–58

    Article  Google Scholar 

  17. Bewley TR, Liu S (1998) Optimal and robust control and estimation of linear paths to transition. J Fluid Mech 365:305–349

    Article  MathSciNet  MATH  Google Scholar 

  18. Blasius P (1908) Grenzschichten in flussigkeiten mit kleiner reibung. Z Angew Math Phys 56(1)

  19. Chevalier M, Schlatter P, Lundbladh A, Henningson DS (2007) A pseudo spectral solver for incompressible boundary layer flows. Trita-Mek 7, KTH Mechanics, Stockholm, Sweden (2007)

  20. Chomaz JM (2005) Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu Rev Fluid Mech 37:357–392

    Article  MathSciNet  Google Scholar 

  21. Chomaz JM, Huerre P, Redekopp LG (1987) Models of hydrodynamic resonances in separated shear flows. In: 6th symposium on turbulent shear flows, Toulouse, France

    Google Scholar 

  22. Chomaz JM, Huerre P, Redekopp LG (1991) A frequency selection criterion in spatially developing flows. Stud Appl Math 84:114–119

    MathSciNet  Google Scholar 

  23. Ding J (1998) The point spectrum of Frobenius-Perron and Koopman operators. Proc Am Math Soc 126(5):1355–1361

    Article  MATH  Google Scholar 

  24. Doyle JC (1978) Guaranteed margins for LQG regulators. IEEE Trans Autom Control 23:756–757

    Article  Google Scholar 

  25. Doyle JC, Glover K, Khargonekar PP, Francis BA (1989) State-space solutions to standard H 2 and H control problems. IEEE Trans Autom Control 34:831–847

    Article  MathSciNet  MATH  Google Scholar 

  26. Dullerud EG, Paganini F (1999) A course in robust control theory. A convex approach. Springer, New York

    Google Scholar 

  27. Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47

    Article  Google Scholar 

  28. Giannetti F, Luchini P (2007) Structural sensitivity of the first instability of the cylinder wake. J Fluid Mech 581:167–197

    Article  MathSciNet  MATH  Google Scholar 

  29. Glover K (1984) All optimal Hankel-norm approximations of linear multivariable systems and the l -error bounds. Int J Control 39:1115–1193

    Article  MathSciNet  MATH  Google Scholar 

  30. Goldstein ME, Hultgren LS (1989) Boundary-layer receptivity to long-wave free-stream disturbances. Annu Rev Fluid Mech 21(1):137–166. doi:10.1146/annurev.fl.21.010189.001033

    Article  MathSciNet  Google Scholar 

  31. Green M, Limebeer JN (1995) Linear robust control. Prentice Hall, New Jersey

    MATH  Google Scholar 

  32. Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp Fluids 44(5):795–806

    Article  Google Scholar 

  33. Guckenheimer J, Holmes P (1983) Nonlinear oscillations, dynamical system and bifuracations of vector fields. Springer, New York

    Google Scholar 

  34. Gugercin S, Sorensen D, Antoulas A (2003) A modified low-rank Smith method for large-scale Lyapunov eqations. Numer Algorithms 32:27–55

    Article  MathSciNet  MATH  Google Scholar 

  35. Hammarling SJ (1982) Numerical solution of the stable, non-negative definite Lyapunov equation. IMA J Numer Anal 2:303–323

    Article  MathSciNet  MATH  Google Scholar 

  36. Hammond DA, Redekopp LG (1998) Local and global instability properties of separation bubbles. Eur J Mech B, Fluids 17(2):145–164. doi:10.1016/S0997-7546(98)80056-3. http://www.sciencedirect.com/science/article/B6VKX-3W292RM-8/2/230f93c37bb57766823fe70d504e7dab

    Article  MathSciNet  MATH  Google Scholar 

  37. Hammond EP, Bewley TR, Moin P (1998) Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phys Fluids 10(9):2421–2423. doi:10.1063/1.869759. http://link.aip.org/link/?PHF/10/2421/1

    Article  Google Scholar 

  38. Henningson DS, Åkervik E (2008) The use of global modes to understand transition and perform flow control. Phys Fluids 20(031):302

    Google Scholar 

  39. Ho CM, Tai Y (1998) Micro-electro-mechanical systems MEMS and fluid flows. Annu Rev Fluid Mech 30:579–612

    Article  Google Scholar 

  40. Holmes P, Lumley J, Berkooz G (1996) Turbulence coherent structuresm dynamical systems and symmetry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  41. Huerre P (2000) Open shear flow instabilities. In: Perspectives in fluid dynamics. Cambridge University Press, Cambridge, pp 159–229

    Google Scholar 

  42. Huerre P, Monkewitz P (1990) Local and global instabilities in spatially developing flows. Annu Rev Fluid Mech 22:473–537

    Article  MathSciNet  Google Scholar 

  43. Huerre P, Monkewitz PA (1985) Absolute and convective instabilities in free shear layers. J Fluid Mech 159:151–168. doi:10.1017/S0022112085003147

    Article  MathSciNet  MATH  Google Scholar 

  44. Ilak M, Rowley CW (2008) Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys Fluids 20(034):103

    Google Scholar 

  45. Jaimoukha IM, Kasenally EM (1994) Krylov subspace methods for solving large Lyapunov equations. SIAM J Numer Anal 31(1):227–251. http://www.jstor.org/stable/2158160

    Article  MathSciNet  MATH  Google Scholar 

  46. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  47. Jovanovic MR, Bamieh B (2005) Componentwise energy amplification in channel flows. J Fluid Mech 534:145–183

    Article  MathSciNet  MATH  Google Scholar 

  48. Juang J, Pappa RS (1985) An eigensystem realization algorithm for modal paramter identification and model reduction. J Guid Control Dyn 3(25):620–627

    Article  Google Scholar 

  49. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82:24–45

    Google Scholar 

  50. Kelso R, Lim T, Perry A (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144

    Article  Google Scholar 

  51. Kelso RM, Smits AJ (1995) Horseshoe vortex systems resulting from the interaction between a laminar boundary layer and a transverse jet. Phys Fluids 7(1):153–158. doi:10.1063/1.868736. http://link.aip.org/link/?PHF/7/153/1

    Article  Google Scholar 

  52. Kim J, Bewley TR (2007) A linear systems approach to flow control. Annu Rev Fluid Mech 39:383–417

    Article  MathSciNet  Google Scholar 

  53. Koopman B (1931) Hamiltonian systems and transformations in Hilbert space. Proc Natl Acad Sci USA 17:315–318

    Article  Google Scholar 

  54. Lall S, Marsden JE, Glavaski S (2002) A subspace approach to balanced truncation for model reduction of nonlinear control systems. Int J Robust Nonlinear Control 12:519–535

    Article  MathSciNet  MATH  Google Scholar 

  55. Laporte F, Corjon A (2000) Direct numerical simulations of the elliptic instability of a vortex pair. Phys Fluids 12(5):1016–1031. doi:10.1063/1.870357. http://link.aip.org/link/?PHF/12/1016/1

    Article  MathSciNet  MATH  Google Scholar 

  56. Lasota A, Mackey CM (1994) Chaos, fractals and noise: stochastic aspects of dynamics. Springer, New York

    MATH  Google Scholar 

  57. Laub A, Heath M, Paige C, Ward R (1987) Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Trans Autom Control 32(2):115–122

    Article  MATH  Google Scholar 

  58. Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK users’ guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia

    Google Scholar 

  59. Leweke T, Williamson CHK (1998) Cooperative elliptic instability of a vortex pair. J Fluid Mech 360:85–119. doi:10.1017/S0022112097008331

    Article  MathSciNet  MATH  Google Scholar 

  60. Lewis FL, Syrmos LV (1995) Optimal control. Wiley, New York

    Google Scholar 

  61. Lim TT, New TH, Luo SC (2001) On the development of large-scale structures of a jet normal to a cross flow. Phys Fluids 13(3):770–775. doi:10.1063/1.1347960. http://link.aip.org/link/?PHF/13/770/1

    Article  MathSciNet  Google Scholar 

  62. Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New York

    MATH  Google Scholar 

  63. Ma Z, Ahuja S, Rowley CW (2011) Reduced order models for control of fluids using the eigensystem realization algorithm. Theor Comput Fluid Dyn 25(1–4):233–247. doi:10.1007/s00162-010-0184-8

    Article  Google Scholar 

  64. Marquillie M, Ehrenstein U (2002) On the onset of nonlinear oscillations in a separating boundary-layer flow. J Fluid Mech 458:407–417

    Google Scholar 

  65. Mezić I (2005) Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn 41(1):309–325

    Article  MATH  Google Scholar 

  66. Mezić I, Banaszuk A (2004) Comparision of systems with complex behavior. Physica D 197(1–2):101–133

    MathSciNet  MATH  Google Scholar 

  67. Milling W (1981) Tollmien–Schlichting wave cancellation. Phys Fluids 24(5):979–981

    Article  Google Scholar 

  68. Monkewitz PA, Bechert DW, Barsikow B, Lehmann B (1990) Self-excited oscillations and mixing in a heated round jet. J Fluid Mech 213:611–639. doi:10.1017/S0022112090002476

    Article  Google Scholar 

  69. Moore B (1981) Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Trans Autom Control 26(1):17–32

    Article  MATH  Google Scholar 

  70. Moussa ZM, Trischka JW, Eskinazi S (1977) The near field in the mixing of a round jet with a cross-stream. J Fluid Mech 80(01):49–80. doi:10.1017/S0022112077001530

    Article  Google Scholar 

  71. Noack B, Afanasiev K, Morzynski M, Tadmor G, Thiele F (2003) A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J Fluid Mech 497:335–363

    Article  MathSciNet  MATH  Google Scholar 

  72. Nordström J, Nordin N, Henningson DS (1999) The fringe region technique and the fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J Sci Comput 20(4):1365–1393

    Article  MathSciNet  MATH  Google Scholar 

  73. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716. doi:10.1103/PhysRevLett.45.712

    Article  Google Scholar 

  74. Pang J, Choi KS (2004) Turbulent drag reduction by lorentz force oscillation. Phys Fluids 16(5):L35–L38. doi:10.1063/1.1689711. http://link.aip.org/link/?PHF/16/L35/1

    Article  Google Scholar 

  75. Parlett BN, Reinsch C (1969) Balancing a matrix for calculation of eigenvalues and eigenvectors. Numer Math 13(503):293–304

    Article  MathSciNet  MATH  Google Scholar 

  76. Penzl T (2000) A cyclic low-rank Smith method for large sparse Lyapunov equations. SIAM J Sci Comput 21:1401–1418

    Article  MathSciNet  MATH  Google Scholar 

  77. Pernebo L, Silverman L (1982) Model reduction via balanced state space representations. IEEE Trans Autom Control 27:382–387

    Article  MathSciNet  MATH  Google Scholar 

  78. Pier B (2002) On the frequency selection of finite-amplitude vortex shedding in the cylinder wake. J Fluid Mech 458:407–417

    Article  MATH  Google Scholar 

  79. Prandtl L (1905) Über Flussigkeitsbewegung bei sehr kleiner Reibung. Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg

  80. Provansal M, Mathis C, Boyer L (1987) Bénard-von Kármán instability: transient and forcing regimes. J Fluid Mech 182:1–22

    Article  MATH  Google Scholar 

  81. Reddy SC, Henningson DS (1993) Energy growth in viscous channel flows. J Fluid Mech 252:209–238

    Article  MathSciNet  MATH  Google Scholar 

  82. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos Trans R Soc Lond 174:935–982. http://www.jstor.org/stable/109431

    Article  MATH  Google Scholar 

  83. Rowley CW (2005) Model reduction for fluids using balanced proper orthogonal decomposition. Int J Bifurc Chaos 15(3):997–1013

    Article  MathSciNet  MATH  Google Scholar 

  84. Rowley CW, Mezic I, Bagheri S, Schlatter P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127

    Article  MathSciNet  MATH  Google Scholar 

  85. Ruhe A (1984) Rational Krylov sequence methods for eigenvalue computation. Linear Algebra Appl 58:391–405. doi:10.1016/0024-3795(84)90221-0. http://www.sciencedirect.com/science/article/B6V0R-45GWNPR-18/2/bd42c81b1a08d43ecbbcd66d74510c7b

    Article  MathSciNet  MATH  Google Scholar 

  86. Saad Y (1980) Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebra Appl 34:269–295. doi:10.1016/0024-3795(80)90169-X. http://www.sciencedirect.com/science/article/B6V0R-45GWNC9-J/2/f5a9c162b4d796b406e56f57b5d2812a

    Article  MathSciNet  MATH  Google Scholar 

  87. Safonov M, Chiang R (1989) A schur method for balanced-truncation model reduction. IEEE Trans Autom Control 34(7):729–733. doi:10.1109/9.29399

    Article  MathSciNet  MATH  Google Scholar 

  88. Schlatter P, Bagheri S, Henningson DS (2010) Self-sustained global oscillations in a jet in crossflow. Online first (http://www.springerlink.com/content/j325x70863266701/)

  89. Schlichting H, Gersten K (2000) Boundary-layer theory. Springer, Heidelberg

    MATH  Google Scholar 

  90. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28

    Article  MathSciNet  MATH  Google Scholar 

  91. Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, New York

    Book  MATH  Google Scholar 

  92. Schrauf G (2005) Status and perspectives of laminar flow. Aeronaut J 109(1102):639–644

    Google Scholar 

  93. Sipp D, Lebedev A (2007) Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J Fluid Mech 593:333–358

    Article  MATH  Google Scholar 

  94. Smith BL, Glezer A (1998) The formation and evolution of synthetic jets. Phys Fluids 10(9):2281–2297. doi:10.1063/1.869828. http://link.aip.org/link/?PHF/10/2281/1

    Article  MathSciNet  MATH  Google Scholar 

  95. Smith RA (1968) Matrix equation xa+bx=c. SIAM J Appl Math 16(1):198–201. http://www.jstor.org/stable/2099416

    Article  MathSciNet  MATH  Google Scholar 

  96. Sorensen D (1992) Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J Matrix Anal Appl 13:357–385

    Article  MathSciNet  MATH  Google Scholar 

  97. Strykowski PJ, Niccum DL (1992) The influence of velocity and density ratio on the dynamics of spatially developing mixing layers. Phys Fluids 4(4):770–781. doi:10.1063/1.858294. http://link.aip.org/link/?PFA/4/770/1

    Article  Google Scholar 

  98. Temam R (1997) Infinite dimensonal dynamical systems in mechanics and physics, 2nd edn. Springer, New York

    Google Scholar 

  99. Theofilis V (2005) Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog Aerosp Sci 39:249–315

    Article  Google Scholar 

  100. Theofilis V, Hein S, Dallmann U (2000) On the origins of unsteadiness and three-dimensionality in a laminar separation bubble. Philos Trans R Soc Lond A 358:3229–3246

    Article  MATH  Google Scholar 

  101. Thiria B, Wesfreid JE (2007) Stability properties of forced wakes. J Fluid Mech 579:137–161. doi:10.1017/S0022112007004818

    Article  MATH  Google Scholar 

  102. Trefethen LN (1997) Pseudospectra of linear operators. SIAM Rev 39(3):383–406

    Article  MathSciNet  MATH  Google Scholar 

  103. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  104. Trefethen LN, Embree M (2005) Spectra and pseudospectra—the behavior of nonnormal matrices and operators. Princeton University Press, New Jersey

    MATH  Google Scholar 

  105. Waleffe F (1990) On the three-dimensional instability of strained vortices. Phys Fluids 2(1):76–80. doi:10.1063/1.857682. http://link.aip.org/link/?PFA/2/76/1

    Article  MathSciNet  MATH  Google Scholar 

  106. Zhou K, Doyle JC, Glover K (2002) Robust and optimal control. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgements

I wish to thank Dan Henningson, Philipp Schlatter and Luca Brandt at KTH for the countless discussions and great ideas. Thanks to Peter Schmid and Clancy Rowley for my stays in LadHyx/Ecole Polytechnique and Princeton, where part of this work was performed. Financial support by the Swedish Research Council (VR-DNR 2010-3910) and computer time from the Swedish National Infrastructure for Computing (SNIC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shervin Bagheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagheri, S. Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators. Arch Computat Methods Eng 19, 341–379 (2012). https://doi.org/10.1007/s11831-012-9074-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-012-9074-0

Keywords

Navigation