Skip to main content

Advertisement

Log in

Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera

  • Original Paper
  • Published:
Arthropod-Plant Interactions Aims and scope Submit manuscript

Abstract

Global atmospheric concentration of CO2 is likely to increase from 350 to 750 ppm over the next 100 years. The present studies were undertaken to understand the effects of elevated CO2 on enzymatic activity and secondary metabolites in chickpea in relation to expression of resistance to pod borer, Helicoverpa armigera. Fifteen-day-old chickpea plants [ICCL 86111—resistant and JG 11—commercial cultivar] grown in the greenhouse were transferred to open-top chambers (OTC) and kept under 350, 550 and 750 ppm of CO2. Twenty neonates of H. armigera were released on each plant at 7 days after shifting the pots to the OTCs. Un-infested plants were maintained as controls. After 7 days of infestation, the activities of defensive enzymes [peroxidase (POD), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and tyrosine ammonia lyase (TAL)] and amounts of total phenols and condensed tannins increased with an increase in CO2 concentration in chickpea. The nitrogen balance index was greater in plants kept at 350 ppm CO2 than in plants kept under ambient conditions. The H. armigera-infested plants had higher H2O2 content; amounts of oxalic and malic acids were greater at 750 ppm CO2 than at 350 ppm CO2. Plant damage was greater at 350 ppm than at 550 and 750 ppm CO2. This information will be useful for understanding effects of increased levels of CO2 on expression of resistance to insect pests to develop strategies to mitigate the effects of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badiani M, D’Annibale A, Paolacci AR, Miglietta F, Rashchi A (1993) The antioxidant status of soybean (Glycine max) leaves grown under nature CO2 enrichment in the field. Aust J Plant Physiol 20:275–284

    Article  CAS  Google Scholar 

  • Barbehenn RV, Constabel CP (2011) Tannins in plant herbivore interactions. Phytochemistry 72:1551–1565

    Article  CAS  PubMed  Google Scholar 

  • Barbehenn R, Dukatz C, Holt C, Reese A, Martiskainen O, Salminenm JP, Yip L, Constabel CP (2010) Feeding on poplar leaves by caterpillars potentiates foliar peroxidase action in their guts and increases plant resistance. Oecologia 164:993–1004

    Article  PubMed  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Article  Google Scholar 

  • Bhonwong A, Stout MJ, Attajarusit J, Tantasawat P (2009) Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). J Chem Ecol 35:28–38

    Article  CAS  PubMed  Google Scholar 

  • Campos-Vergas R, Saltveit ME (2002) Involvement of putative chemical wound signals in the induction of phenolic metabolism in wounded lettuce. Physiol Plant 114:73–84

    Article  Google Scholar 

  • Chen F, Wu G, Ge F, Parajulee MN, Shrestha RB (2005) Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol Expert Appl 115:341–350

    Article  CAS  Google Scholar 

  • Chitti Babu G, Sharma HC, Madhumati T, Raghavaiah G, Krishna Murthy KVM, Rao VS (2014) A semi-synthetic chickpea flour based diet for long-term maintenance of laboratory culture of Helicoverpa armigera. Indian J Entomol 76(4):336–340

    Google Scholar 

  • DeLucia EH, Nabity PD, Zavala JA, Barenbaum MR (2012) Climate change: resetting plant–insect interactions. Plant Physiol 160:1677–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi VS, Sharma HC, Rao PA (2013) Influence of oxalic and malic acids in chickpea leaf exudates on the biological activity of CryIAc towards Helicoverpa armigera. J Insect Physiol 59(4):394–399

    Article  PubMed  Google Scholar 

  • Falkowski PG, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290(5490):291–296

    Article  CAS  PubMed  Google Scholar 

  • Guo H, Sun Y, Li Y, Liu X, Zhang W, Ge F (2014) Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. New Phytol 201:279–291

    Article  CAS  PubMed  Google Scholar 

  • Himanen SJ, Nissinen A, Dong W-X, Nerg A-M, Stewart JRCN, Poppy GM, Holopainen JK (2008) Interactions of elevated carbon dioxide and temperature with aphid feeding on transgenic oilseed rape: are Bacillus thuringiensis (Bt) plants more susceptible to nontarget herbivores in future climate. Glob Change Biol 14:1–18

    Article  Google Scholar 

  • Ibrahim MH, Jaafar HZ (2011) Enhancement of leaf gas exchange and primary metabolites under carbon dioxide enrichment up-regulates the production of secondary metabolites in Labisia pumila seedlings. Molecules 16:3761–3777

    Article  CAS  PubMed  Google Scholar 

  • Intergovernmental Panel on Climate Change (2007) IPCC fourth assessment report: climate change 2007. IPCC, Geneva

    Book  Google Scholar 

  • Jayaraj J, Bhuvaneswari R, Rabindran R, Muthukrishnan S, Velazhahan R (2010) Oxalic acid-induced resistance to Rhizoctonia solani in rice is associated with induction of phenolics, peroxidase and pathogenesis-related proteins. J Plant Interact 5(2):147–157

    Article  CAS  Google Scholar 

  • Karowe DN, Grubb C (2011) Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). J Chem Ecol 37:1332–1340

    Article  CAS  PubMed  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. J Plant Physiol 160:859–863

    Article  CAS  PubMed  Google Scholar 

  • Lindroth RL (2010) Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. J Chem Ecol 36:2–21

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Ann Rev Plant Biol 55:591–628

    Article  CAS  Google Scholar 

  • Lowry H, Rosebrough NI, Far AL, Ranall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maffei ME, Mithofer A, Boland W (2007) Insects feeding on plants: rapid signals and responses preceding the induction of photochemical release. Phytochemistry 68:2946–2959

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plant. Phytochemistry 18:193–215

    Article  CAS  Google Scholar 

  • Meyer S, Cerovic ZG, Goulas Y, Montpied P, Demotes S, Bidel LPR, Moya I, Dreyer E (2006) Relationship between assessed polyphenols and chlorophyll contents and leaf mass per area ratio in woody plants. Plant Cell Environ 29:1338–1348

    Article  CAS  PubMed  Google Scholar 

  • Muzika RM (1993) Terpenes and phenolics in response to nitrogen fertilization: a test of the carbon/nutrient balance hypothesis. Chemoecology 4:3–7

    Article  CAS  Google Scholar 

  • Noreen Z, Ashraf M (2009) Change in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). Environ Exp Bot 67:395–402

    Article  CAS  Google Scholar 

  • Polle A, Eiblmeier M, Sbeppard L, Murray M (1997) Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant Cell Environ 20:1317–1321

    Article  CAS  Google Scholar 

  • Rao MS, Khan MAM, Srinivas K, Vanaja M, Rao GGSN, Ramakrishna YS (2006) Effects of elevated carbon dioxide and temperature on insect-plant interactions—a review. Agric Rev 27(3):200–207

    Google Scholar 

  • Robert EB (1971) Method for estimation of tannin in grain sorghum. Agrochem J 63:511–512

    Google Scholar 

  • Robinson EA, Ryan GD, Newman JA (2012) A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol 194:321–336

    Article  CAS  PubMed  Google Scholar 

  • Sadasivam S, Manickam A (1996) Biochemical methods. New Age International Limited and Tamil Nadu Agricultural University, Coimbatore

    Google Scholar 

  • Sallas L, Luomala EM, Utriainen J, Kainulainen P, Holopainen JK (2003) Contrasting effects of elevated carbon dioxide concentration and temperature on Rubisco activity, chlorophyll fluorescence, needle ultrastructure and secondary metabolites in conifer seedlings. Tree Physiol 23:97–108

    Article  CAS  PubMed  Google Scholar 

  • Sarmah BK, Acharjee S, Sharma HC (2012) Chickpea: crop improvement under changing environment conditions. In: Tuteja N, Gill SS, Tuteja R (eds) Improving crop productivity in sustainable agriculture. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 361–381

    Chapter  Google Scholar 

  • Shannon LM, Kay E, Lew JY (1966) Peroxidase isozymes from horse radish roots. Isolation and physical properties. J Biol Chem 241:2166–2172

    CAS  PubMed  Google Scholar 

  • Sharma HC (2014) Climate change effects on insects: implications for crop protection and food security. J Crop Improv 29(2):229–259

    Article  Google Scholar 

  • Sharma HC, Pampathy G, Dwivedi SL, Reddy LJ (2003) Mechanism and diversity of resistance to insect pests in wild relatives of groundnut. J Econ Entomol 96(6):1886–1897

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton, USA, p 439

    Google Scholar 

  • Stutte GW, Eraso I, Rimando AM (2008) Carbon dioxide enrichment enhances growth and flavonoid content of two Scutellaria species. J Am Soc Hortic Sci 133(5):631–638

    Google Scholar 

  • Sun Y, Guo H, Zhu-Salzman K, Kang L, Ge F (2013) Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. Plant Sci 210:128–140

    Article  CAS  PubMed  Google Scholar 

  • Uprety DC, Mahalaximi V (2000) Effect of elevated CO2 and nitrogen nutrition on photosynthesis, growth and carbon–nitrogen balance in Brassica juncea. J Agron Crop Sci 184:271–276

    Article  CAS  Google Scholar 

  • Uprety DC, Garg SC, Bisht BS, Maini HK, Dwivedi N, Paswan G, Raj A, Saxena DC (2006) Carbon dioxide enrichment technologies for crop response studies. J Sci Ind Res 65:859–866

    CAS  Google Scholar 

  • Vanaja M, Maheswari M, Ratnakumar P, Ramakrishna YS (2006) Monitoring and controlling of CO2 concentrations in open top chambers for better understanding of plants response to elevated CO2 levels. Indian J Radio Space 35:193–197

    CAS  Google Scholar 

  • War AR, Paulraj MG, Tariq Ahmad, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7(10):1306–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Hussain B, Sharma HC (2013) Induced resistance in groundnut by jasmonic acid and salicylic acid through alteration of trichome density and oviposition by Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). AOB Plants. doi:10.1093/aobpla/plt053

    PubMed Central  Google Scholar 

  • Winger A, Purdy S, Maclean A, Pourtau N (2006) The role of sugars in integrating environmental signals during the regulation of leaf senescence. New Phytol 161:781–789

    Article  Google Scholar 

  • Zavala JA, Nabity PD, DeLucia EH (2013) An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu Rev Entomol 58:79–97

    Article  CAS  PubMed  Google Scholar 

  • Zieslin N, Ben-Zaken R (1993) Peroxidase activity and presence of phenolic substances in peduncles of rose flowers. Plant Physiol Biochem 31:333–339

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Department of Science and Technology (DST), New Delhi, India. We are thankful to the Entomology staff, ICRISAT, for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari C. Sharma.

Additional information

Handling Editor: Jarmo Holopainen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, H.C., War, A.R., Pathania, M. et al. Elevated CO2 influences host plant defense response in chickpea against Helicoverpa armigera . Arthropod-Plant Interactions 10, 171–181 (2016). https://doi.org/10.1007/s11829-016-9422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11829-016-9422-3

Keywords

Navigation