Skip to main content
Log in

Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition

  • Published:
Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

A comparative study of several model lipid bilayers of different composition, which included analysis of kinetic parameters of model lipid bilayers and permeability of bilayer membranes for small molecules, has been carried out. The conformity of results of numeric experiments to experimental data (structure of membrane lipid bilayers, lateral diffusion coefficients, and relative permeability of biomembranes for ligands) is discussed in the framework of a standard molecular dynamics protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gennis, R.B., Biomembrany: Molekuliamaya struktura i funktsii (Biomembranes: Molecular Structure and Function, New York: Springer-Verlag, 1989), Moscow: Mir, 1997.

    Chapter  Google Scholar 

  2. Baker, R.W., Membrane Technology and Applications, N. Y.: McGraw-Hill, 1999.

    Google Scholar 

  3. Karplus, M. and McCammon, J., Molecular Dynamics Simulations of Biomolecules, Nature Struct. Biol., 2002, vol. 9, pp. 646–652.

    Article  PubMed  CAS  Google Scholar 

  4. Frenkel, D. and Smit, B., Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed., San Diego: Acad. Press, 2002.

    Google Scholar 

  5. Shaitan, K.V., Tourleigh, Ye.V., Golik, D.N., Tereshkina, K.B., Levtsova, O.V., Fedik, I.V., Shaytan, A.K., Li, A., and Kirpichnikov, M.P., Nonequilibrium Molecular Dynamics of Nanostructures Including Biological Ones, Khim. Fizika (Rus.), 2006, vol. 25, pp. 31–48.

    CAS  Google Scholar 

  6. Shaitan, K.V and Pustoshilov, P.P., Molecular Dynamics of Stearic Acid Monolayers, Biofizika (Rus.), 1999, vol. 44, pp. 429–434.

    Google Scholar 

  7. Balabaev, N.K., Rabinovich, A.L., Ripatti, P.O., and Kornilov, V.V., Molecular Dynamics of Polyunsaturated Lipid Monolayers, Russ. J. Phys. Chem. (Rus.), 1998, vol. 72, pp. 686–689.

    CAS  Google Scholar 

  8. Tourleigh, E.V., Shaitan, K.V., and Balabaev, N.K., Molecular Dynamics of Hydrated Hydrocarbon Membrane Structures, Russ. J. Phys. Chem. (Rus.), 2005, vol. 79, pp. 1448–1456.

    Google Scholar 

  9. Wataru, S., Keiko, S., Terujiko, B., and Masuhiro, M., Molecular Dynamics Study of Bipolar Tetraether Lipid Membranes, Biophys. J., 2005, vol. 89, pp. 3195–3202.

    Article  CAS  Google Scholar 

  10. Edholm, O. and Jahnig, F., The Structure of a Membrane-Spanning Polypeptide Studied by Molecular Dynamics, Biophys. Chem., 1998, vol. 30, pp. 279–292.

    Article  Google Scholar 

  11. Efremov, R.G., Volynsky, PE., Nolde, D.E., Vergoten, G., and Arseniev, A.S., Implicit Two-Phase Solvation Model as a Tool to Assess Conformation and Energetics of Proteins in Membrane-Mimic Media, Theor Chem. Acc., 2001, vol. 106, pp. 48–54.

    Article  CAS  Google Scholar 

  12. Stevens, M.J., Coarse-Grained Simulations of Lipid Bilayers, J. Chem. Phys., 2004, vol. 121, pp. 11942–11948.

    Article  PubMed  CAS  Google Scholar 

  13. Essmann, U. and Berkowitz, M.L., Dynamical Properties of Phospholipid Bilayers from Computer Simulation, Biophys. J., 1999, vol. 76, pp. 2081–2089.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Rog, T., Murzyn, K. and Pasenkiewicz-Gierula, M., Molecular Dynamics Simulations of Charged and Neutral Lipid Bilayers: Treatment of Electrostatic Interactions, Acta Biochim. Pol., 2003, vol. 50, pp. 789–798.

    PubMed  CAS  Google Scholar 

  15. Wang, J., Cieplak, P. and Kollman, P.A., How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules? J. Comput. Chem., 2000, vol. 21, pp. 1049–1074.

    Article  CAS  Google Scholar 

  16. Tourleigh, Ye.V., Shaitan, K.V., and Balabaev, N.K., Molecular Dynamics of a Hydrated Palmitoyloleoylphosphatidylcholine Bilayers in Collisional Ther mostat, Biologicheskie Membrany (Rus.), 2005, vol. 22, pp. 519–530.

    Google Scholar 

  17. Tourleigh, Ye.V., Shaitan, K.V., and Balabaev, N.K., Dynamic Heterogeneity of Phospholipid Bilayer and Molecular Diffusion of Molecules at the Interface, Biofizika (Rus.), 2005, vol. 50, pp. 1042–1047.

    CAS  Google Scholar 

  18. White, S.H., Small Phospholipid Vesicles: Internal Pressure, Surface Tension, and Surface Free Energy, Proc. Natl. Acad. Sci. USA, 1980, vol. 77, pp. 4048–4050.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Orbach, E. and Finkelstein, A., The Nonelectrolyte Permeability of Planar Lipid Bilayer Membranes, J. Gen. Physiol., 1980, vol. 75, pp. 427–436.

    Article  PubMed  CAS  Google Scholar 

  20. Park, S. and Schulten, K., Calculating Potentials of Mean Force from Steered Molecular Dynamics Simulations, J. Chem. Phys., 2004, vol. 120, pp. 5946–5961.

    Article  PubMed  CAS  Google Scholar 

  21. Isralewitz, B., Gao, M., and Schulten, K., Steered Molecular Dynamics and Mechanical Functions of Proteins, Curr. Opin. Struct. Biol., 2001, vol. 11, pp. 224–230.

    Article  PubMed  CAS  Google Scholar 

  22. Lemak, A.S. and Balabaev, N.K., A Comparison between Collisional Dynamics and Brownian Dynamics, Mol. Simul., 1995, vol. 15, pp. 223–231.

    Article  CAS  Google Scholar 

  23. Lemak, A.S. and Balabaev, N.K., Molecular Dynamics Simulation of a Polymer Chain in Solution by Collisional Dynamics Method, J. Comput. Chem., 1996, vol. 17, pp. 1685–1695.

    Article  CAS  Google Scholar 

  24. Murzyn, K., Rog, T., Jezierski, G., Takaoka, Y., and Pasenkiewicz-Gierula, M., Effects of Phospholipids Unsaturation on the Membrane/Water Interface: A Molecular Simulation Study, Biophys. J., 2001, vol. 81, pp. 170–183.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Nichols-Smith, S., The, S.Y., and Kuhl, T.L., Thermodynamic and Mechanical Properties of Model Mitochondrial Membranes, BBA Biomembranes, 2004, vol. 1663, pp. 82–88.

    Article  PubMed  CAS  Google Scholar 

  26. Patrick, L., Martin, J.Z., and Benoit, R., Lipid-Mediated Interactions between Intrinsic Membrane Proteins: Dependence on Protein Size and Lipid Composition, Biophys. J., 2001, vol. 81, pp. 276–284.

    Article  Google Scholar 

  27. Hyslop, PA., Morel, B., and Sauerheber, R.D., Organization and Interaction of Cholesterol and Phosphatidylcholine in Model Bilayer Membrane, Biochemistry, 1990, vol. 29, pp. 1025–1038.

    Article  PubMed  CAS  Google Scholar 

  28. Pabst, G., Rappolt, M., Amenitsch, H., and Laggner, P., Structural Information from Multilamellar Liposomes at Full Hydration: Full Q-Rangefitting with High Quality X-ray Data, Phys. Rev. E}, 2000, vol. 62, pp. 4000–4009.

    Article  CAS  Google Scholar 

  29. Smaby, J.M., Mornsen, M.M., Brockman, H.L., and Brown, R.E., Phosphatidylcholine Acyl Unsaturation Modulates the Decrease in Interfacial Elasticity Induced by Cholesterol, Biophys. J., 1997, vol. 73, pp. 1492–1505.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Evans, R.W., Williams, M.A., and Tinoco, J., Surface Areas of 1-Palmitoyl Phosphatidylcholines and Their Interactions with Cholesterol, Biochem. J., 1987, vol. 245, pp. 455–462.

    PubMed Central  PubMed  CAS  Google Scholar 

  31. Chiu, S.W., Clark, M., Balaji, V., Subramaniam, S., Scott, H.L., and Jakobsson, E., Incorporation of Surface Tension into Molecular Dynamics Simulation of Inter face: A Fluid Phase Lipid Bilayer Membrane, Biophys. J., 1995, vol. 69, pp. 1230–1245.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Braganza, L.F. and Worcester, D.L., Structural Changes in Lipid Bilayers and Biological Membranes Caused Hydrostatic Pressure, Biochemistry, 1986, vol. 25, pp. 7484–7488.

    Article  PubMed  CAS  Google Scholar 

  33. Sackmann, E., Handbook of Biological Physics, vol. IA, Structure and Dynamics of Membranes, Lipowsky, R. and Sackmann, E., eds., Amsterdam: Elsevier, 1995, pp. 213–304.

  34. Pfeiffer, W., Henkel, T., Sackmann, E., Knoll, W., and Richter, D., Local Dynamics of Lipid Bilayers Studied by Incoherent Quasi-Elastic Neutron Scattering, Europhys. Lett., 1989, vol. 8, pp. 201–206.

    Article  CAS  Google Scholar 

  35. Filippov, A., Oradd, G., and Lindblom, G., The Effect of Cholesterol on the Lateral Diffusion of Phospholipids in Oriented Bilayer, Biophys. J., 2003, vol. 84, pp. 3079–3086.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Vaz, W.L.C. and Almeida, P.F., Microscopic Versus Macroscopic Diffusion in One-Component Fluid Phase Lipid Bilayer Membranes, Biophys. J., 1991, vol. 60, pp. 1553–1554.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Schmidt, Th., Schutz, G.J., Baumgartner, W., Gruber, H.J., and Schindler, H., Imaging of Single Molecule Diffusion, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 2926–2929.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Nagle, J.F., Zhang, R., Tristram-Nagle, S., Sun, W.J., Petrache, H.I., and Suter, R.M., X-ray Structure Determination of Fully Hydrated L Alpha Phase Dipalmi toylphosphatidylcholine Bilayers, Biophys. J., 1996, vol. 70, pp. 1419–1431.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Wiener, M.C. and White, S.H., Structure of a Fluid Dioleoylphosphatidylcholine Bilayer Determined by Joint Refinement of X-ray and Neutron Diffraction Data. III. Complete Structure, Biophys. J., 1992, vol. 61, pp. 434–447.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Batchelor, G.K., Developments in Microhydrodynamics, Theoretical and Applied Mechanics, IUTAM Congress, Koiter, W.T., Ed., Amsterdam-New York-Oxford: North Holland-Elsevier Science Publishers, 1976, pp. 33–55.

    Google Scholar 

  41. Kung, C.E. and Reed, J.K., Microviscosity Measurements of Phospholipid Bilayers Using Fluorescent Dyes That Undergo Torsional Relaxation, Biochemistry, 1986, vol. 25, pp. 6114–6121.

    Article  CAS  Google Scholar 

  42. Dunham, W.R., Sands, R.H., Klein, S.B., Duelli, E.A., Rhodes, L.M., and Marcelo, C.L., EPR Measurements Showing That Plasma Membrane Viscosity Can Vary from 30 to 100 cP in Human Epidermal Cell Strains, Spectrochim. Acta A, 1996, vol. 52, pp. 1357–1368.

    Article  Google Scholar 

  43. Sinensky, M., Homeoviscous Adaptation-A Homeostatic Process That Regulates the Viscosity of Membrane Lipids in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1974, vol. 71, pp. 522–525.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Sonnleitner, A., Schutz, G.J., and Schmidt, Th., Free Brownian Motion of Individual Lipid Molecules in Biomembranes, Biophys. J., 1999, vol. 77, pp. 2638–2642.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  45. Walter, A. and Gutknecht, J., Permeability of Small Nonelectrolytes through Lipid Bilayer Membranes, J. Membr Biol., 1986, vol. 90, pp. 207–217.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Shaitan.

Additional information

Original Russian Text © K.V. Shaitan, M.Yu. Antonov, Ye.V. Tourleigh, O.V. Levtsova, K.B. Tereshkina, I.N. Nikolaev, M.P. Kirpichnikov, 2008, published in Biologicheskie Membrany, 2008, Vol. 25, No. 1, pp. 66–75.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaitan, K.V., Antonov, M.Y., Tourleigh, Y.V. et al. Comparative study of molecular dynamics, diffusion, and permeability for ligands in biomembranes of different lipid composition. Biochem. Moscow Suppl. Ser. A 2, 73–81 (2008). https://doi.org/10.1007/s11827-008-1011-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11827-008-1011-x

Keywords

Navigation