Skip to main content
Log in

Haploid embryogenesis and molecular detection of somatic embryogenesis receptor-like kinase (TcSERK) genes in sliced ovary cultures of cocoa (Theobroma cacao L.)

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Somatic embryos were induced from sliced unpollinated ovaries of cocoa. The influence of genotypes and cold pre-treatment were studied on the induction of callus and haploid embryogenesis. Among the five cocoa genotypes studied, CCRP 5 and CCRP 1 had recorded a maximum callus induction frequency of 66.00% and 62.00%, respectively, from sliced ovaries on WPM medium supplemented with 2-iP (1.0 mg L−1), Zeatin (1.0 mg L−1), and AgNO3 (5.0 mg L−1). Sliced ovaries isolated from cold pre-treated (4 °C for 1 day), 4–6 mm long (containing mature ovule) flower buds recorded the maximum callus induction frequency (67%). The highest percentage of embryogenic calli was noticed from ovaries of pre-treated (4 °C for 1 day) flower buds of CCRP 5 (31.00%). During proliferation and sub-culturing, callus morphogenesis such as white compact, light creamy nodular, proliferative beige shaded embryogenic, and light brown watery spongy non-proliferative calli were observed. Induction of globular and heart stage somatic embryos was noticed in WPM medium supplemented with ascorbic acid (35.2 mg L−1), Zeatin (1.0 mg L−1), Kinetin (3.0 mg L−1), and sucrose (30.0 g L−1). Further, the cotyledonary stage embryos and shoot conversion were observed in WPM medium supplemented with MgSO4 (4.0 g L−1), K2SO4 (12.0 g L−1), glucose (1.0 g L−1), and sucrose (30.0 g L−1). Histological and scanning electron microscopic studies revealed an asynchronous pattern of somatic embryos development (globular, heart, and torpedo stage) from embryogenic calli. The molecular confirmation of embryogenic competence with different types of ovary callus at different stages was confirmed with the detection of the TcSERK gene through semi-quantitative RT-PCR. The TcSERK gene expression was higher in embryogenic friable calli and lower in callus with early embryo induction. Flow cytometry analysis revealed that cells from ovary calli were haploids (1n = 10). This study would be a starting step for the induction of haploid embryogenesis from sliced ovaries of the well-adapted regional genotypes of cocoa, for obtaining rapid homozygosity; as induction of haploids through androgenesis in an earlier study could not yield fruitful results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

Abbreviations

WPM:

Woody plant medium

TcSERK:

Theobroma cacao L. Somatic embryogenesis receptor like kinase

RT-PCR:

Reverse transcription polymerase chain reaction

MgSO4 :

Magnesium sulfate

K2SO4 :

Potassium sulfate

SE:

Somatic embryogenesis

AgNO3 :

Silver nitrate

ANOVA:

Analysis of variance

FAA:

Formalin–acetic acid–alcohol

ESEM:

Environmental scanning electron microscope

MgCl2 :

Magnesium chloride

MOPS:

3-Morpholinopropane-1-sulfonic acid

PI:

Propidium iodide

mm:

Millimetre

pg:

Picogram

2ip:

6-(Gamma, gamma-Dimethylallylamino) purine

References

  • Afoakwa EO (2016) Chocolate science and technology. Wiley, Chichester

    Book  Google Scholar 

  • Ajijah N, Hartati RS, Rubiyo R, Sukma D, Sudarsono S (2016) Effective cacao somatic embryo regeneration on kinetin supplemented DKW medium and somaclonal variation assessment using SSRS markers. Agrivita J Agric Sci 38(1):80–92

    Google Scholar 

  • Alemanno L, Berthouly M, Michaux-Ferriere N (1996) Histology of somatic embryogenesis from floral tissues cocoa. Plant Cell Tissue Organ Cult 46(3):187–194

    Article  Google Scholar 

  • Badu M, Tripathy B, Sahu GS, Jena AK (2017) Role of doubled haploids in vegetable crop improvement. J Pharm Phytochem 6(6):384–389

    CAS  Google Scholar 

  • Baudino S, Hansen S, Brettschneider R, Hecht VF, Dresselhaus T, Loerz H, Rogowsky PM (2001) Molecular characterization of two novel maize LRR receptor- like kinases, which belong to the SERK gene family. Planta 213(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Bekele FL, Bekele I, Butler DR, Bidaisee GG (2006) Patterns of morphological variation in a sample of cacao (Theobroma cacao L.) germplasm from the International Cocoa Genebank, Trinidad. Genet Resour Crop Evol 53(5):933–948

    Article  Google Scholar 

  • Benelli C, Germana MA, Ganino T, Beghe D, Fabbri A (2010) Morphological and anatomical observations of abnormal somatic embryos from anther cultures of Citrus reticulata. Biol Plant 54(2):224–230

    Article  Google Scholar 

  • Bhat JG, Murthy HN (2007) Factors affecting in-vitro gynogenic haploid production in niger (Guizotia abyssinica (L. f.) Cass.). Plant Growth Regul 52(3):241–248

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: an introductory text. Springer, India

    Book  Google Scholar 

  • Bohanec B (2009) Doubled haploids via gynogenesis. In: Advances in haploid production in higher plants. Springer, Dordrecht, pp 35–46

  • Cardoso JC, Abdelgalel AM, Chiancone B, Latado RR, Lain O, Testolin R, Germana MA (2016) Gametic and somatic embryogenesis through in vitro anther culture of different Citrus genotypes. Plant Biosyst Int J Deal All Asp Plant Biol 150(2):304–312

    Google Scholar 

  • Chen JF, Cui L, Malik AA, Mbira KG (2011) In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tissue Organ Cult 104(3):311–319

    Article  Google Scholar 

  • Couto EGDO, Pinho EVDRV, Pinho RGV, Veiga AD, Bustamante FDO, Dias KODG (2015) In vivo haploid induction and efficiency of two chromosome duplication protocols in tropical maize. Ciência e Agrotecnologia 39:435–442

    Article  Google Scholar 

  • Dan Y (2008) Biological functions of antioxidants in plant transformation. In Vitro Cell Dev Biol-Plant 44(3):149–161

    Article  CAS  Google Scholar 

  • Diao WP, Jia YY, Song H, Zhang XQ, Lou QF, Chen JF (2009) Efficient embryo induction in cucumber ovary culture and homozygous identification of the regenerants using SSR markers. Sci Hortic 119(3):246–251

    Article  CAS  Google Scholar 

  • Doi H, Hoshi N, Yamada E, Yokoi S, Nishihara M, Hikage T, Takahata Y (2013) Efficient haploid and doubled haploid production from unfertilized ovule culture of gentians (Gentiana spp.). Breed Sci 63(4):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dpoolezel J, Binarová P, Lcretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31(2):113–120

    Article  Google Scholar 

  • El-Mahrouk ME, Maamoun MK, El-Banna AN, Omran SA, Dewir YH, El-Hendawy S (2018) In vitro gynogenesis and flow cytometry analysis of the regenerated haploids of black cumin (Nigella sativa). HortScience 53(5):681–686

    Article  CAS  Google Scholar 

  • Eshaghi ZC, Abdollahi MR, Moosavi SS, Deljou A, Segui-Simarro JM (2015) Induction of androgenesis and production of haploid embryos in anther cultures of borage (Borago officinalis L.). Plant Cell Tissue Organ Culture (PCTOC) 122(2):321–329

    Article  CAS  Google Scholar 

  • Falque M, Kodia A, Sounigo O, Eskes A, Charrier A (1992) Gamma-irradiation of cacao (Theobroma cacao L.) pollen: effect on pollen grain viability, germination and mitosis and on fruit set. Euphytica 64(3):167–172

    Article  Google Scholar 

  • Fayos O, Valles MP, Garces-Claver A, Mallor C, Castillo AM (2015) Doubled haploid production from Spanish onion (Allium cepa L.) germplasm: embryogenesis induction, plant regeneration and chromosome doubling. Front Plant Sci 6(384):1–11

    Google Scholar 

  • Figueira A, Janick J (1995) Somatic embryogenesis in cacao (Theobroma cacao L.). In: Jain S, Gupta P, Newton R (eds) Somatic embryogenesis in woody plants, vol 2. Klumer Academic Publishers, Netherlands, pp 291–310

    Chapter  Google Scholar 

  • Figueira A, Janick J, Goldsbrough P (1992) Genome size and DNA polymorphism in Theobroma cacao. J Am Soc Horticult Sci 117(4):673–677

    Article  CAS  Google Scholar 

  • Gallego Rua AM, Henao Ramirez AM, Urrea Trujillo AI, Atehortua Garces L (2016) Polyphenols distribution and reserve substances analysis in cacao somatic embryogenesis. Acta Biologica Colombiana 21(2):335–345

    Article  CAS  Google Scholar 

  • Germana MA (2011) Anther culture for haploid and doubled haploid production. Plant Cell Tissue Organ Cult 104(3):283–300

    Article  Google Scholar 

  • Grewal S, Ahuja A, Atal CK (1980) Clonal multiplication of medicinal plants by tissue culture. In vitro proliferation of shoot apices of Eucalyptus citriodora Hook. Indian J Exp Biol 18:775–776

    Google Scholar 

  • Gurel S, Gurel E, Kaya Z (2000) Doubled haploid plant production from unpollinated ovules of sugar beet (Beta vulgaris L.). Plant Cell Rep 19(12):1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Hadziabdic D, Wadl PA, Reed SM (2011). Haploid cultures. Plant Tissue Cult Dev Biotech pp 385–396

  • Han Y, Wei A, Zhang L, Liu N, Zhang G, Zhao G (2010) A new cucumber cultivar’Jinmei 3’bred by unfertilized ovary culture. Acta Horticulturae Sinica 37(3):509–510

    Google Scholar 

  • Han Y, Wei A, Liu N, Chen Z, Zhang Y, Li P (2019) A new cucumber cultivar for protected cultivation “Kerun 99.” Acta Horticulturae Sinica 46(3):609–610

    Google Scholar 

  • Hazarika RR, Mishra VK, Chaturvedi R (2013) In vitro haploid production—a fast and reliable approach for crop improvement. Crop improvement under adverse conditions. Springer, New York, pp 171–212

    Chapter  Google Scholar 

  • Hecht V, Vielle-Calzada JP, Hartog MV, Schmidt ED, Boutilier K, Grossniklaus U, De Vries SC (2001) The Arabidopsis SERK 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127(3):803–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Lu XY, Zhao JT, Chen JK (2010) MaSERK1 gene expression associated with somatic embryogenic competence and disease resistance response in banana (Musa spp.). Plant Mol Biol Report 28(2):309–316

    Article  CAS  Google Scholar 

  • Koli SP, Murthy HN (2013) Haploid plant regeneration from unpollinated ovules of Cucumis melo L. var. conomon cv. Mudicode. Biotech J Int 3(4):605–613

    Google Scholar 

  • Kurtar ES, Balkaya A, Ozer MO (2018) Production of callus mediated gynogenic haploids in winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Czech J Genetics Plant Breed 54(1):9–16

    Article  CAS  Google Scholar 

  • Lentini Z, Gonzalez A, Tabares E, Buitrago ME, Wedzony M (2020) Studies on gynogenesis induction in cassava (Manihot esculenta Crantz) unpollinated ovule culture. Front Plant Sci 11(365):1–14

    Google Scholar 

  • Li Z, Traore A, Maximova S, Guiltinan MJ (1998) Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using thidiazuron. In Vitro Cell Dev Biol-Plant 34(4):293–299

    Article  CAS  Google Scholar 

  • Li JW, Si SW, Cheng JY, Li JX, Liu JQ (2013) Thidiazuron and silver nitrate enhanced gynogenesis of unfertilized ovule cultures of Cucumis sativus. Biol Plant 57(1):164–168

    Article  CAS  Google Scholar 

  • Li F, Cheng Y, Zhao X, Yu R, Li H, Wang L, Li S, Shan Q (2020) Haploid induction via unpollinated ovule culture in Gerbera hybrida. Sci Rep 10(1):1–9

    CAS  Google Scholar 

  • Liu L, Wang J, Zhao H, Yang H, Zhang F (2015) Studies on embryo induction from un-pollinated ovary culture and regenerated plant in cucumber. China Veg 6:48–53

    Google Scholar 

  • Lloyd GB, McCown BH (1980) Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. Proc-Int Plant Propagators’ Soc 30:421–437

    Google Scholar 

  • Lopez-Puc G, Herrera-Cool GJ, Alberto UV, Ramos-Diaz A, Gongora-Canul CC, Aguilera-Cauich EA, Martínez-Sebastián G (2021) In vitro gynogenesis of Jatropha curcas L. var ALJC01. Trop Subtrop Agroecosyst 24(1):1–10

    Article  Google Scholar 

  • Ma J, He Y, Hu Z, Xu W, Xia J, Guo C, Lin S, Cao L, Chen C, Wu C, Zhang J (2012a) Characterization and expression analysis of AcSERK2, a somatic embryogenesis and stress resistance related gene in pineapple. Gene 500(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Ma J, He YH, Wu CH, Liu HP (2012b) Cloning and molecular characterization of a SERK gene transcriptionally induced during somatic embryogenesis in Ananas comosus cv. Shenwan. Plant Mol Biol Report 30(1):195–203

    Article  CAS  Google Scholar 

  • Maximova SN, Alemanno L, Young A, Ferriere N, Traore A, Guiltinan MJ (2002) Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. In Vitro Cell Dev Biol-Plant 38(3):252–259

    Article  Google Scholar 

  • Minyaka E, Niemenak N, Sangare A, Omokolo DN (2008) Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Cult 94(2):149–160

    Article  CAS  Google Scholar 

  • Mishra VK, Chaturvedi R (2012) In vitro haploid production–fast forward technique for improved crop production. Botanica 59(61):35–42

    Google Scholar 

  • Mishra VK, Gowswami R (2014) Haploid production in higher plant. Int J Chem Biol Sci 1:26–45

    Google Scholar 

  • Modeste KK, Eliane MT, Daouda K, Brahima SA, Tchoa K, Kouablan KE, Mongomaké K (2017) Effect of antioxidants on the callus induction and the development of somatic embryogenesis of cocoa [Theobroma cacao (L.)]. Aust J Crop Sci 11(1):25–31

    Article  CAS  Google Scholar 

  • Montalban IA, Garcia-Mendiguren O, Goicoa T, Ugarte MD, Moncalean P (2015) Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata. New for 46(2):309–317

    Article  Google Scholar 

  • Nath S, Mallick SK, Jha S (2014) An improved method of genome size estimation by flow cytometry in five mucilaginous species of Hyacinthaceae. Cytometry A 85(10):833–840

    Article  PubMed  CAS  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin upregulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133(1):218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the Somatic Embryogenesis Receptor-Like Kinase1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60(6):1759–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazuki A, Aflaki F, Gurel E, Ergul A, Gurel S (2018) Gynogenesis induction in sugar beet (Beta vulgaris) improved by 6-benzylaminopurine (BAP) and synergized with cold pretreatment. Sugar Tech 20(1):69–77

    Article  CAS  Google Scholar 

  • Perez-Nunez MT, Souza R, Sáenz L, Chan JL, Zuniga-Aguilar JJ, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Popova T, Grozeva S, Todorova V, Stankova G, Anachkov N, Rodeva V (2016) Effects of low temperature, genotype and culture media on in vitro androgenic answer of pepper (Capsicum annuum L.). Acta Physiol Plant 38(11):1–11

    Article  CAS  Google Scholar 

  • Porras-Murillo R, Andrade-Torres A, Solis-Ramos LY (2018) Expression analysis of two somatic embryogenesis receptor kinase (SERK) genes during in vitro morphogenesis in Spanish cedar (Cedrela odorata L.). 3 Biotech 8(11):1–9

    Article  Google Scholar 

  • Puddephat IJ, Robinson HT, Smith BM, Lynn J (1999) Influence of stock plant pretreatment on gynogenic embryo induction from flower buds of onion. Plant Cell Tissue Organ Cult 57:145–148

    Article  Google Scholar 

  • Ramirez AMH, De la Hoz VT, Osorio TMO, Garcés LA, Trujillo AIU (2018) Evaluation of the potential of regeneration of different Colombian and commercial genotypes of cocoa (Theobroma cacao L.) via somatic embryogenesis. Sci Hortic 229:148–156

    Article  CAS  Google Scholar 

  • Rekha HR, Rakhi C (2013) Establishment of dedifferentiated callus of haploid origin from unfertilized ovaries of tea (Camellia sinensis (L.) O. Kuntze) as a potential source of total phenolics and antioxidant activity. In Vitro Cell Dev Biol-Plant 49(1):60–69

    Article  CAS  Google Scholar 

  • Santa-Catarina C, Hanai LR, Dornelas MC, Viana AM, Floh EI (2004) SERK gene homolog expression, polyamines and amino acids associated with somatic embryogenic competence of Ocotea catharinensis Mez.(Lauraceae). Plant Cell Tissue Organ Cult 79(1):53–61

    Article  CAS  Google Scholar 

  • Santana M, Velasquez S, Mata J (2010) Carbon source effect on cacao organogenesis and somatic embryogenesis. Cytogenetic analysis. Agronomía Tropical 60(2):193–202

    Google Scholar 

  • Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Aragao FJL (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168(3):723–729

    Article  CAS  Google Scholar 

  • Santos MO, Romano E, Vieira LS, Baldoni AB, Aragao FJL (2009) Suppression of SERK gene expression affects fungus tolerance and somatic embryogenesis in transgenic lettuce. Plant Biol 11(1):83–89

    Article  CAS  PubMed  Google Scholar 

  • Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27(12):1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ED, Guzzo F, Toonen MA, De Vries SC (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124(10):2049–2062

    Article  CAS  PubMed  Google Scholar 

  • Shalaby TA (2007) Factors affecting haploid induction through in vitro gynogenesis in summer squash (Cucurbita pepo L.). Sci Hortic 115(1):1–6

    Article  Google Scholar 

  • Sharma SK, Millam S, Hein I, Bryan GJ (2008) Cloning and molecular characterization of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228(2):319

    Article  CAS  PubMed  Google Scholar 

  • Shimada T, Hirabayashi T, Endo T, Fujii H (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK1) from Citrus unshiu Marc. Scientia Horticulturae-Amsterdam 103(2):233–238

    Article  CAS  Google Scholar 

  • Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat Triticum aestivum. Plant Cell Rep 27(5):833–843

    Article  CAS  PubMed  Google Scholar 

  • Sivachandran R, Gnanam R, Sudhakar D, Suresh J, Ganesh Ram S (2017a) Influence of genotypes, stages of microspore, pre-treatments and media factors on induction of callus from anthers of cocoa (Theobroma cacao L.). J Plant Crop 45(3):162–172

    Google Scholar 

  • Sivachandran R, Gnanam R, Sudhakar D, Suresh J, Ganesh Ram S, Gangai Selvi R (2017b) Development of in vitro gynogenesis system in cocoa (Theobroma cacao L.). Chem Sci Rev Lett 6(24):2169–2177

    CAS  Google Scholar 

  • Somleva MN, Schmidt EDL, De Vries SC (2000) Embryogenic cells in Dactylis glomerata L. (Poaceae) explants identified by cell tracking and by SERK expression. Plant Cell Rep 19(7):718–726

    Article  CAS  PubMed  Google Scholar 

  • Sorntip A, Poolsawat O, Kativat C, Tantasawat PA (2017) Gynogenesis and doubled haploid production from unpollinated ovary culture of cucumber (Cucumis sativus L.). Can J Plant Sci 98(2):353–361

    Google Scholar 

  • Srivastava P, Chaturvedi R (2008) In vitro androgenesis in tree species: an update and prospect for further research. Biotechnol Adv 26(5):482–491

    Article  CAS  PubMed  Google Scholar 

  • Svirshchevskaya AM, DolezeF J (2000) Production and performance of gynogenetic sugarbeet lines. J Sugar Beet Res 37(4):117–133

    Article  Google Scholar 

  • Tan C, Furtek D (2003) Development of an in vitro regeneration system for Theobroma cacao from mature tissues. Plant Sci 164(3):407–412

    Article  CAS  Google Scholar 

  • Tantasawat PA, Sorntip A, Poolsawat O, Chaowiset W, Pornbungkerd P (2015a) Evaluation of factors affecting embryo-like structure and callus formation in unpollinated ovary culture of cucumber (Cucumis sativus). Int J Agric Biol 17(3):613–618

    Article  CAS  Google Scholar 

  • Tantasawat PA, Sorntip A, Pornbungkerd P (2015b) Effects of exogenous application of plant growth regulators on growth, yield, and in vitro gynogenesis in cucumber. HortScience 50(3):374–382

    Article  CAS  Google Scholar 

  • Thomas TD, Bhatnagar AK, Razdan MK, Bhojwani SS (1999) A reproducible protocol for the production of gynogenic haploids of mulberry, Morus alba L. Euphytica 110(3):169–173

    Article  Google Scholar 

  • Tomaszewska-Sowa M, Keutgen AJ (2021) Plant regeneration from unpollinated ovules of sugar beet (Beta vulgaris L.) on growing media with different carbohydrates. Sugar Tech 1–9

  • Traore A, Guiltinan MJ (2006) Effects of carbon source and explant type on somatic embryogenesis of four cacao genotypes. Hortic Sci 41(3):753–758

    CAS  Google Scholar 

  • Ulrich I, Ulrich W (1991) High-resolution flow cytometry of nuclear DNA in higher plants. Protoplasma 165(1–3):212–215

    Article  Google Scholar 

  • Voora V, Bermúdez S, Larrea C (2019) Global Market Report: Cocoa. International Institute for Sustainable Development

  • Yang C, Zhao TJ, Yu DY, Gai JY (2011) Isolation and functional characterization of a SERK gene from soybean [Glycine max (L.) Merr.]. Plant Mol Biol Report 29(2):334–344

    Article  CAS  Google Scholar 

  • Zheng L, Ma J, Mao J, Fan S, Zhang D, Zhao C, An N, Han M (2018) Genome-wide identification of SERK genes in apple and analyses of their role in stress responses and growth. BMC Genomics 19(1):1–18

    Article  CAS  Google Scholar 

  • Zou T, Su HN, Wu Q, Sun XW (2018) Haploid induction via unfertilized ovary culture in watermelon. Plant Cell Tissue and Organ Culture (PCTOC) 135(2):179–187

    Article  CAS  Google Scholar 

  • Zou T, Song H, Chu X, Tong L, Liang S, Gong S, Yanga H, Sun X (2020) Efficient induction of gynogenesis through unfertilized ovary culture with winter squash (Cucurbita maxima Duch.) and pumpkin (Cucurbita moschata Duch.). Sci Hortic 264:109152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Spices and Plantation crops, Tamil Nadu Agricultural University for explants source; Sanjaya K Mallick, Cytometry Solution Pvt. Ltd. for flow cytometry experiment and T. G. Menon, Microtomy Lab, Chennai for Histology experiment.

Funding

The authors thank Mondelez International Private Ltd., U.S for providing financial support to carry out the research work.

Author information

Authors and Affiliations

Authors

Contributions

RG, RS, DS, and MR conceived and designed the experiments. VJ maintained cocoa accessions in the field for the collection of flower buds. RG, RS, RNS, and KR performed the experiments and analysed the results. RG, RS, RNS, SR, and RR drafted the manuscript. RG, SR, RR, DS, and MR were responsible for the manuscript editing, and also supervision of the entire work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gnanam Ramasamy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not Applicable.

Consent to participate

Not applicable.

Consent for publication

The work is presented in the manuscript with the consent of all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramasamy, G., Ramasamy, S., Ravi, N.S. et al. Haploid embryogenesis and molecular detection of somatic embryogenesis receptor-like kinase (TcSERK) genes in sliced ovary cultures of cocoa (Theobroma cacao L.). Plant Biotechnol Rep 16, 283–297 (2022). https://doi.org/10.1007/s11816-022-00756-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-022-00756-y

Keywords

Navigation