Skip to main content
Log in

An insight into the tomato spotted wilt virus (TSWV), tomato and thrips interaction

  • Review
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Lycopersicum esculentum (tomato), is a member of the Solanaceae family with a global production of approximately 159 million tons per year. However, the productivity of tomato is constrained by many factors including biotic and abiotic stresses. Of these, tomato spotted wilt virus (TSWV) is one of the major threats to tomato productivity. TSWV is a ribovirus and is transmitted by small insects commonly known as thrips. Several approaches have been utilized in the past few decades to understand the plant and thrips responses against TSWV. These include conventional molecular biology to high-throughput genomics, transcriptomics, and proteomics approaches which have led to the identification of several genes/proteins involved in the tomato/thrips-TSWV interaction. Moreover, several genes (such as Sw-1a and Sw-1b, sw-2, sw-3, sw-4, Sw-5, Sw-6, and Sw-7) and proteins (like DNA-J) have also been identified from its plant hosts which provide resistance against this deadly virus. In this mini-review, we are summarizing the progress made so far in this area to provide the overview of tomato, thrips and TSWV interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Badillo-Vargas IE, Rotenberg D, Schneweis DJ, Hiromasa Y, Tomich JM, Whitfield AE (2012) Proteomic analysis of Frankliniella occidentalis and differentially expressed proteins in response to Tomato spotted wilt virus infection. J Virol 86:8793–8809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corpillo D, Gardini G, Vaira AM, Basso M, Aime S, Accotto GP, Fasano M (2004) Proteomics as a tool to improve investigation of substantial equivalence in genetically modified organisms: The case of a virus-resistant tomato. Proteomics 4:193–200

    Article  PubMed  CAS  Google Scholar 

  • De Haan P, Wagemakers L, Peters D, Goldbach R (1990) The S RNA segment of tomato spotted wilt virus has an ambisense character. J Gen Virol 71:1001–1007

    Article  PubMed  Google Scholar 

  • de Haan P, Kormelink R, de Oliveira Resende R, van Poelwijk F, Peters D, Goldbach R (1991) Tomato spotted wilt virus L RNA encodes a putative RNA polymerase. J Gen Virol 72:2207–2216

    Article  PubMed  Google Scholar 

  • Debreczeni DE, López C, Aramburu J, Darós JA, Soler S, Galipienso L, Falk BW, Rubio L (2015) Complete sequence of three different biotypes of tomato spotted wilt virus (wild type, tomato Sw-5 resistance-breaking and pepper Tsw resistance-breaking) from Spain. Arch Virol 160:2117–2123

    Article  PubMed  CAS  Google Scholar 

  • Finlay KW (1953) Inheritance of spotted wilt resistance in the tomato II. Five genes controlling spotted wilt resistance in four tomato types. Aust J Biol Sci 6:153–163

    PubMed  CAS  Google Scholar 

  • Ghatak A, Chaturvedi P, Paul P, Agrawal GK, Rakwal R, Kim ST, Weckwerth W, Gupta R (2017) Proteomics survey of Solanaceae family: current status and challenges ahead. J Proteom 169:41–57

    Article  CAS  Google Scholar 

  • Guo Y, Liu B, Ding Z, Li G, Liu M, Zhu D, Sun Y, Dong S, Lou Z (2017) A distinct mechanism for the formation of the ribonucleoprotein complex of the Tomato spotted wilt virus. J Virol JVI.00892–17

  • Gupta R, Wang Y, Agrawal GK, Rakwal R, Jo IH, Bang KH, Kim ST (2015) Time to dig deep into the plant proteome: a hunt for low-abundance proteins. Front Plant Sci 6:22

    PubMed  PubMed Central  Google Scholar 

  • Hu Z-Z, Feng Z-K, Zhang Z-J, Liu Y-B, Tao X-R (2011) Complete genome sequence of a tomato spotted wilt virus isolate from China and comparison to other TSWV isolates of different geographic origin. Arch Virol 156:1905–1908

    Article  PubMed  CAS  Google Scholar 

  • Kim J-H, Kim Y-S, Jang S-W, Jeon Y-H (2013) complete genome sequence of tomato spotted wilt virus from paprika in korea. Int J Phytopathol 2:121–136

    Google Scholar 

  • Kormelink R, De Haan P, Meurs C, Peters D, Goldbach R (1992) The nucleotide sequence of the M RNA segment of tomato spotted wilt virus, a bunyavirus with two ambisense RNA segments. J Gen Virol 73:2795–2804

    Article  PubMed  CAS  Google Scholar 

  • Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1994) Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56–65

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Cho WK, Kim MK, Kwak HR, Choi HS, Kim KH (2011) Complete genome sequences of three tomato spotted wilt virus isolates from tomato and pepper plants in Korea and their phylogenetic relationship to other TSWV isolates. Arch Virol 156:725–728

    Article  PubMed  CAS  Google Scholar 

  • Lin S-S, Henriques R, Wu H-W, Niu Q-W, Yeh S-D, Chua N-H (2007) Strategies and mechanisms of plant virus resistance. Plant Biotechnol Rep 1:125–134

    Article  Google Scholar 

  • López-Gresa MP, Lisón P, Yenush L, Conejero V, Rodrigo I, Bellés JM (2016) Salicylic acid is involved in the basal resistance of tomato plants to citrus exocortis viroid and tomato spotted wilt virus. PLoS One 11:e0166938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lovato FA, Inoue-Nagata AK, Nagata T, de Ávila AC, Pereira LAR, Resende RO (2008) The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 137:245–252

    Article  PubMed  CAS  Google Scholar 

  • Margaria P, Bosco L, Vallino M, Ciuffo M, Mautino GC, Tavella L, Turina M (2014) The NSs protein of tomato spotted wilt virus is required for persistent infection and transmission by Frankliniella occidentalis. J Virol 88:5788–5802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mirnezhad M, Romero-González RR, Leiss KA, Choi YH, Verpoorte R, Klinkhamera PGL (2010) Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. Phytochem Anal 21:110–117

    Article  PubMed  CAS  Google Scholar 

  • Mitter N, Koundal V, Williams S, Pappu H (2013) Differential expression of tomato spotted wilt virus-derived viral small rnas in infected commercial and experimental host plants. PLoS One 8:e762766

    Article  CAS  Google Scholar 

  • Mollema C, Cole RA (1996) Low aromatic amino acid concentrations in leaf proteins determine resistance to Frankliniella occidentalis in four vegetable crops. Entomol Exp Appl 78:325–333

    Article  CAS  Google Scholar 

  • Nagata T, Inoue-Nagata a K, Prins M, Goldbach R, Peters D (2000) Impeded thrips transmission of defective tomato spotted wilt virus isolates. Phytopathology 90:454–459

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Inoue-Nagata AK, van Lent J, Goldbach R, Peters D (2002) Factors determining vector competence and specificity for transmission of Tomato spotted wilt virus. J Gen Virol 83:663–671

    Article  PubMed  Google Scholar 

  • Ogada PA, Kiirika LM, Lorenz C, Senkler J, Braun H-P, Poehling H-M (2017) Differential proteomics analysis of Frankliniella occidentalis immune response after infection with Tomato spotted wilt virus (Tospovirus). Dev Comp Immunol 67:1–7

    Article  PubMed  CAS  Google Scholar 

  • Oliver JE, Whitfield AE (2016) The genus tospovirus: emerging bunyaviruses that threaten food security. Annu Rev Virol 3:101–124

    Article  PubMed  CAS  Google Scholar 

  • Prins M, Goldbach R (1998) The emerging problem of tospovirus infection and nonconventional methods of control. Trends Microbiol 6:31–35

    Article  PubMed  CAS  Google Scholar 

  • Qiu WP, Geske SM, Hickey CM, Moyer JW (1998) Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology 244:186–194

    Article  PubMed  CAS  Google Scholar 

  • Ramchiary N, Kehie M, Brahma V, Kumaria S, Tandon P (2014) Application of genetics and genomics towards Capsicum translational research. Plant Biotechnol Rep 8:101–123

    Article  Google Scholar 

  • Ramesh SV, Williams S, Kappagantu M, Mitter N, Pappu HR (2017) Transcriptome-wide identification of host genes targeted by tomato spotted wilt virus-derived small interfering RNAs. Virus Res 238:13–23

    Article  PubMed  CAS  Google Scholar 

  • Roselló S, Díez MJ, Nuez F (1998) Genetics of tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509

    Article  Google Scholar 

  • Saidi M, Warade SD (2008) Tomato breeding for resistance to Tomato spotted wilt virus (TSWV): an overview of conventional and molecular approaches. Czech J Genet Plant Breed 44:83–92

    Article  Google Scholar 

  • Schneweis DJ, Whitfield AE, Rotenberg D (2017) Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector. Virology 500:226–237

    Article  PubMed  CAS  Google Scholar 

  • Sevik MA, Arli-Sokmen M (2012) Estimation of the effect of Tomato spotted wilt virus (TSWV) infection on some yield components of tomato. Phytoparasitica 40:87–93

    Article  Google Scholar 

  • Shrestha A, Champagne DE, Culbreath AK, Rotenberg D, Whitfield AE, Srinivasan R (2017) Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds). J Gen Virol 98:2156–2170

    Article  PubMed  CAS  Google Scholar 

  • Sin S-H, McNulty BC, Kennedy GG, Moyer JW (2005) Viral genetic determinants for thrips transmission of Tomato spotted wilt virus. Proc Natl Acad Sci 102:5168–5173

  • Soellick T-R, Uhrig JF, Bucher GL, Kellmann J-W, Schreier PH (2000) The movement protein NSm of tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc Natl Acad Sci 97:2373–2378

  • Soundararajan P, Manivannan A, Muneer S, Park YG, Ko CH, Jeong BR (2015) Computational analysis of tomato spotted wilt virus glycoprotein trafficking mechanism and its inhibition by antiviral agents. Austin J Proteomics Bioinform Genomics 2:1010

    Google Scholar 

  • Turina M, Kormelink R, Resende RO (2016) Resistance to tospoviruses in vegetable crops: epidemiological and molecular aspects. Annu Rev Phytopathol 54:347–371

    Article  PubMed  CAS  Google Scholar 

  • Ullman DE, GERMAN TL, Sherwood JL, Westcot DM, CANTONE FA (1993) Tospovirus replication in insect vector cells—immunocytochemical evidence that the nonstructural protein encoded by the s-rna of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83: 456–463

    Article  CAS  Google Scholar 

  • Van Poelwijk F, De Haan P, Kikkert M, Prins M, Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R (1996) Replication and expression of the tospoviral genome. Acta Hortic 431:201–208

    Article  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2004) Expression and characterization of a soluble form of Tomato spotted wilt virus glycoprotein G(N). J Virol 78:13197–13206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitfield AE, Kumar NKK, Rotenberg D, Ullman DE, Wyman EA, Zietlow C, Willis DK, German TL (2008) A soluble form of the Tomato spotted wilt virus (TSWV) glycoprotein G(N) (G(N)-S) inhibits transmission of TSWV by Frankliniella occidentalis. Phytopathology 98:45–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Zhang P, Li W, Zhang J, Huang F, Yang J, Bei Y, Lu Y (2013) De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance. Genomics 101:296–305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (NRF-2017R1A2B2009171), Basic Science Research Program through the NRF funded by the Ministry of Education, Science and Technology (NRF-2016H1D3A1937706) and the KRIBB Research Initiative Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Kwon, SY. & Kim, S.T. An insight into the tomato spotted wilt virus (TSWV), tomato and thrips interaction. Plant Biotechnol Rep 12, 157–163 (2018). https://doi.org/10.1007/s11816-018-0483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-018-0483-x

Keywords

Navigation