Skip to main content

Advertisement

Log in

Application of genetics and genomics towards Capsicum translational research

  • Review Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Capsicum species commonly known as Chili peppers are economically important group of plants belonging to the Solanaceae family. Of the 38 species reported, only six species namely, Capsicum annuum, C. assamicum, C. baccatum, C. frutescence, C. chinense and C. pubescens are cultivated. They are very important component of the human being as peppers are used as vegetables, spices, and a coloring agent and for medicinal purposes. Based on pungency trait which is due to the presence of a group of compounds known as capsaicinoids, cultivated capsicums are classified into sweet peppers and hot peppers. Although conventional breeding and classical genetic analysis were successful in estimating the number of genes for economically important traits governed by few major genes and their incorporation in the breeding programme, the advent of molecular markers and recently developed next generation sequencing technologies supplemented greatly in dissecting the genetic and molecular basis of economically important traits in the capsicum genome for applied research. Here in this review, we tried to highlight the use of molecular markers, comparative mapping and advanced genomics technologies and their integrated use in the translational research of cultivated Capsicums.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aluru MR, Mazourek M, Landry LG, Curry J, Jahn M, O’Connell MA (2003) Differential expression of fatty acid synthase genes, Acl, Fat and Kas, in Capsicum fruit. J Exp Bot 54:1655–1664

    CAS  PubMed  Google Scholar 

  • Anilkumar M, Nair AS (2004) Multiple shoot induction in Capsicum annuum L. cv. Early California Wonder. Plant Cell Biotech Mol Biol 5:95–100

    Google Scholar 

  • Arnedo-Andres MS, Gil-Ortega R, Luis-Arteaga M, Hormaza JI (2002) Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.). Theor Appl Genet 105:1067–1074

    CAS  PubMed  Google Scholar 

  • Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, Deynze AV (2012) De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics 13:571

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aza-González C, Nunez-Palenius HG, Ochoa-Alejo N (2011) Molecular biology of capsaicinoid biosynthesis in chili pepper (Capsicum spp.) Plant Cell Rep 30:695–706

  • Babu BS, Pandravada SR, Prasad Rao RDVJ, Anitha K, Chakrabarty SK, Varaprasad KS (2011) Global source of pepper genetic resources against arthropods, nematodes and pathogens. Crop Prot 30:389–400

    Google Scholar 

  • Barchi L, Lefebvre V, Sage-Palloix AM, Lanteri S, Palloix A (2009) QTL analysis of plant development and fruit traits in pepper and performance of selective phenotyping. Theor Appl Genet 118:1157–1171

    CAS  PubMed  Google Scholar 

  • Ben-Chaim A, Grube RC, Lapidot M, Jahn M, Paran I (2001) Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor Appl Genet 102:1213–1220

    CAS  Google Scholar 

  • Ben-Chaim A, Borovsky Y, De Jong W, Paran I (2003a) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Google Scholar 

  • Ben-Chaim A, Borovsky Y, Rao GU, Tanyolac B, Paran I (2003b) fs3.1: a major fruit shape QTL conserved in Capsicum. Genome 46:1–9

    CAS  PubMed  Google Scholar 

  • Ben-Chaim A, Brodsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    CAS  PubMed  Google Scholar 

  • Bennett DJ, Kirby GW (1968) Constitution and biosynthesis of capsaicin. J Chem Soc C 442–446

  • Bento CS, Rodrigues R, Gonçalves LS, Oliveira HS, Santos MH, Pontes MC, Sudré CP (2013) Inheritance of resistance to Pepper yellow mosaic virus in Capsicum baccatum var. pendulum. Genet Mol Res 12:1074–1082

    CAS  PubMed  Google Scholar 

  • Blum E, Liu K, Mazourek M, Yoo EY, Jahn M, Paran I (2002) Molecular mapping of the C locus for presence of pungency in Capsicum. Genome 45:702–705

    CAS  PubMed  Google Scholar 

  • Blum E, Mazourek M, O’Connell M, Curry J, Thorup T, Liu K, Jahn M, Paran I (2003) Molecular mapping of capsaicinoid biosynthesis genes and QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 108:79–86

    CAS  PubMed  Google Scholar 

  • Borovsky Y, Paran I (2011) Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. Theor Appl Genet 123:657–665

    PubMed  Google Scholar 

  • Bosland PW (1996) Capsicums: Innovative uses of an ancient crop. In: Janick J (ed) Progress in new crops. Ashs Press, Arlington, pp 479–487

    Google Scholar 

  • Bosland PW, Lindsey DL (1991) A seedling screen for Phytophthora root rot of pepper, Capsicum annuum. Plant Dis 75:1048–1050

    Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice Capsicums. CABI Publishing, New York

    Google Scholar 

  • Caranta C, Palloix A, Gebre-Selassie K, Lefebvre V, Moury B, Daubèze AM (1996) A complementation of two genes originating from susceptible Capsicum annuum lines confers a new and complete resistance to Pepper veinal mottle virus. Phytopathology 86:739–743

    Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997a) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant Microbe Interact 10:872–878

    Google Scholar 

  • Caranta C, Palloix A, Lefebvre V, Daube ze AM (1997b) QTLs for a component of partial resistance to cucumber mosaic virus in pepper: restriction of virus installation in host cells. Theor Appl Genet 94: 431–438

  • Caranta C, Thabuis A, Palloix A (1999) Development of a CAPS marker for the Pvr4 locus: a tool for pyramiding potyvirus resistance genes in pepper. Genome 42:1111–1116

    CAS  PubMed  Google Scholar 

  • Caranta C, Pflieger S, Lefebvre V, Daubèze AM, Thabuis A, Palloix A (2002) QTLs involved in the restriction of cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet 104:586–591

    Google Scholar 

  • Chen RG, Li HX, Zhang LY, Zhang JH, Xiao JH, Ye ZB (2007) CaMi, a root-knot nematode resistance gene from hot pepper (Capsicum annuum L.) confers nematode resistance in tomato. Plant Cell Rep 26:895–905

    CAS  PubMed  Google Scholar 

  • Chen C, Chen G, Hao X, Cao B, Chen Q, Liu S, Lei J (2011) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci 181:439–448

    Google Scholar 

  • Choi HW, Kim YJ, Lee SC, Hong JK, Hwang BK (2007) Hydrogen peroxide generation by the pepper extracellular peroxidase CaPO2 activates local and systemic cell death and defense response to bacterial pathogens. Plant Physiol 145:890–904

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi D, Kim S, Park M, Yeom S, Seo E, Cheong KC, Kim YM, Kang BC, Lee YH (2013) The genome sequence of hot pepper (Capsicum annuum L.). Plant and Animal Genome Asia 2013, March 17–13, Grand Copthorne Waterfront Hotel, Singapore

  • Csillery G, Szarka E, Sardi E, Mityko J, Kapitany J, Nagy B, Szarka J (2004) The unity of plant defense: Genetics, breeding and physiology. In: Proceedings of the 12th Eucarpia Meeting on Genetics and Breeding of Capsicum and Egg-plant, Noordwijkerhout, The Netherlands, pp 147–153

  • Curry J, Aluru M, Mendoza M, Nevarez J, Melendrez M, O’Connell MA (1999) Transcripts for possible capsaicinoid biosynthetic genes are differentially accumulated in pungent and non-pungent Capsicum spp. Plant Sci 148:47–57

    CAS  Google Scholar 

  • Dang FF, Wang YN, Yu L, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL (2013) CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell Environ 36:757–774

    CAS  Google Scholar 

  • Delis M, Garbaczewska G, Niemirowicz-Szczytt K (2005) Differentiation of adventitious buds from Capsicum annuum hypocotyls after co-culture with Agrobacterium tumefaciens. Acta Biol Crac 17:193–198

    Google Scholar 

  • Díaz J, Pomar F, Bernal A, Merino F (2004) Peroxidases and the metabolism of capsaicin in Capsicum annuum L. Phytochem Rev 3:141–157

    Google Scholar 

  • Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me 3 and Me 4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.) Theor Appl Genet 103:592–600

    Google Scholar 

  • Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I, Brunoud G, Pijarowski L, Palloix A, Lefebvre V, Abad P (2007) Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114:473–486

    CAS  PubMed  Google Scholar 

  • Engler DE, Guri AZ, Lauritis JA, Schloemer LMP (1993) Genetically transformed pepper plants and methods for their production. USA Patent 5(262):316

    Google Scholar 

  • Fazari A, Palloix A, Wang L, Hua YM, Sage-Palloix AM, Zhang BX, Djian-Caporalino C (2012) The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breed 131:665–673

    CAS  Google Scholar 

  • Góngora-Castillo E, Fajardo-Jaime R, Fernández-Cortes A, Garfias AEJ, Lozoya-Gloria E, Martínez O, Ochoa-Alejo N (2012) Rivera-Bustamante R: the capsicum transcriptome DB: a “hot” tool for genomic research. Bioinformation 8:043–047

    Google Scholar 

  • Green SK, Kim JS (1991) Characteristics and control of viruses infecting peppers. Technical Bulletin no. 18. Asian Vegetable Research and Development Centre, Taipei, Taiwan

  • Greenleaf WH (1986) Pepper Breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI Publishing Co., Westport, pp 67–134

    Google Scholar 

  • Grube RC, Blauth JR, Arnedo MA, Jahn MK (2000) Identification of a dominant potyvirus resistance gene cluster in Capsicum. Theor Appl Genet 101:852–859

    CAS  Google Scholar 

  • Gunay AL, Rao PS (1978) In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Sci Lett 11:365–372

    CAS  Google Scholar 

  • Gururaj HB, Padma MN, Giridhar P, Ravishankar GA (2012) Functional validation of Capsicum frutescens aminotransferase gene involved in vanillylamine biosynthesis using Agrobacterium mediated genetic transformation studies in Nicotiana tabacum and Capsicum frutescens calli cultures. Plant Sci 195:96–105

  • Gutiérrez-Carbajal MG, Monforte-González M, Miranda-Ham ML, Godoy-Hernández G, Vázquez-Flota F (2010) Induction of capsaicinoid synthesis in Capsicum chinense cell cultures by salicylic acid or methyl jasmonate. Biol Plant 54:430–434

    Google Scholar 

  • Ha SH, Kim JB, Jong-Sug Park JS, Lee SW, Cho KJ (2007) A comparison of the carotenoid accumulation in Capsicum varieties that show different ripening colours: deletion of the capsanthin–capsorubin synthase gene is not a prerequisite for the formation of a yellow pepper. J Exp Bot 58:3135–3144

    CAS  PubMed  Google Scholar 

  • Hernan VA, Rosa U, Luisa OL, Dominique R, Orlene G, Yereni M, Oscar M (2013) A new virus-induced gene silencing vector based on Euphorbia mosaic virus-Yucatan peninsula for NPR1 silencing in Nicotiana benthamiana and Capsicum annuum var. Anaheim. Biotechnol Lett 35:811

    Google Scholar 

  • Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao J, Stoffel K, Truco M, Kozik A, Michelmore RW, Deynze AV (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30 K unigene Pepper GeneChip. PLoS ONE 8:e56200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huan-huan H, Zhong-hua Z, Zheng-hai Z, Sheng-li M, Li-hao W, Bao-xi Z (2011) Analysis of SSRs information in Capsicum spp. from EST database. Agr Sci China 10:1532–1536

    Google Scholar 

  • Huh J, Kang B, Nahm S, Kim S, Ha K, Lee M, Kim B (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit colour in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    CAS  Google Scholar 

  • Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH (2012a) Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci 197:50–58

    Google Scholar 

  • Huh SU, Kim KJ, Paek KH (2012b) Capsicum annuum basic transcription factor 3 (CaBtf3) regulates transcription of pathogenesis-related genes during hypersensitive response upon Tobacco mosaic virus infection. Biochem Biophys Res Comm 417:910–917

    CAS  PubMed  Google Scholar 

  • Hurtado-Hernandez H, Smith P (1985) Inheritance of mature fruit colour in Capsicum annuum L. J Hered 76:211–213

    Google Scholar 

  • Hwang JN, Li J, Liu WY, An SJ, Cho H, Her NH, Yeam I, Kim D, Kang B (2009) Double mutations in eIF4E and eIFiso4E confer recessive resistance to Chilli veinal mottle virus in pepper. Mol Cells 27:329–336

    CAS  PubMed  Google Scholar 

  • Jahn M, Paran I, Hoffmann K, Radwanski ER, Livingstone KD, Grube RC, Aftergoot E, Lapidot M, Moyer JW (2000) Genetic mapping of the Tsw locus for resistance to the tospovirus tomato spotted wilt virus in Capsicum spp. and its relationship to the Sw-5 gene for resistance to the same pathogen in tomato. Mol Plant Microb Interact 13:673–682

    CAS  Google Scholar 

  • Jayashankar S, Bagga S, Phillips GC (1997) Sweet pepper (Capsicum annuum) transformation using Agrobacterium rhizogenes. Hort Sci 32:454

    Google Scholar 

  • Jones JB, Minsavage GV, Roberts PD, Johnson RR, Kousik CS, Subramanian S, Stall RE (2002) A non-hypersensitive resistance in pepper to the bacterial spot pathogen is associated with two recessive genes. Phytopathology 92:273–277

    CAS  PubMed  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Micro 27:755–762

    CAS  Google Scholar 

  • Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD (2001) An interspecific (Capsicum annuum × C. Chinense) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet 102:531–539

    CAS  Google Scholar 

  • Kang BC, Yeam I, Frantz JD, Murphy JF, Jahn MM (2005) The pvr1 locus in Capsicum encodes a translation initiation factor eIF4E that interacts with tobacco etch virus VPg. Plant J 42:392–405

    CAS  PubMed  Google Scholar 

  • Kang WH, Hoang NH, Yang HB, Kwon JK, Jo SH, Seo JK, Kim KH, Choi D, Kang BC (2010) Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor Appl Genet 120:1587–1596

    CAS  PubMed  Google Scholar 

  • Kehie M, Kumaria S, Tandon P (2012a) In vitro plantlet regeneration from nodal segments and shoot tips of Capsicum chinense Jacq. cv. Naga King Chili. 3 Biotech 2:31–35

  • Kehie M, Kumaria S, Tandon P (2012b) Osmotic stress induced—capsaicin production in suspension cultures of Capsicum chinense Jacq.cv. Naga King Chili. Acta Physiol Plant 34:2039–2044

    CAS  Google Scholar 

  • Khan H, Siddique I, Anis M (2006) Thidiazuron induced somatic embryogenesis and plant regeneration in Capsicum annuum. Biol Plant 50:789–792

    CAS  Google Scholar 

  • Kim DS, Hwang BK (2012) The pepper MLO gene, CaMLO2, is involved in the susceptibility cell-death response and bacterial and oomycete proliferation. Plant J 72:843–855

    CAS  PubMed  Google Scholar 

  • Kim DH, Kim BD (2005) Development of SCAR markers for early identification of cytoplasmic male sterility genotype in chili pepper (Capsicum annuum L.). Mol Cells 31:416–422

    Google Scholar 

  • Kim SJ, Lee SJ, Kim BD, Paek KH (1997) Satellite-RNA-mediated resistance to cucumber mosaic virus in transgenic plants of hot pepper (Capsicum annuum cv. Golden Tower). Plant Cell Rep 16:825–830

    CAS  Google Scholar 

  • Kim M, Kim S, Kim S, Kim BD (2001) Isolation of cDNA clones differentially accumulated in the placenta of pungent pepper by suppression subtractive hybridization. Mol Cells 11:213–219

    CAS  PubMed  Google Scholar 

  • Kim DH, Kang JG, Kim BD (2007) Isolation and characterization of the cytoplasmic male sterility-associated or f456 gene of chili pepper (Capsicum annuum L.). Plant Mol Biol 63:519–532

    CAS  PubMed  Google Scholar 

  • Kim HJ, Baek KH, Lee SW, Kim JE, Lee BW, Cho HS, Kim WT, Choi D, Hur CG (2008a) Pepper EST database: comprehensive in silico tool for analyzing the chili pepper (Capsicum annuum) transcriptome. BMC Plant Biol 8:101

    PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Nahm SH, Lee HR, Yoon GB, Kim KT, Kang BC, Choi D, Kweon OY, Cho MC, Kwon JK, Han JH, Kim JH, Park MK, Ahn JH, Choi SH, Her NH, Sung JH, Kim BD (2008b) BAC-derived markers converted from RFLP linked to Phytophthora capsici resistance in pepper (Capsicum annuum L.). Theor Appl Genet 118:15–27

    CAS  PubMed  Google Scholar 

  • Kim HJ, Han JH, Kwon JK, Park M, Kim BD, Choi D (2010a) Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334. Theor Appl Genet 120:1099–1106

    CAS  PubMed  Google Scholar 

  • Kim OR, Cho MC, Kim BD, Huh JH (2010b) A splicing mutation in the gene encoding phytoene synthase causes orange coloration in Habanero pepper fruits. Mol Cells 30:569–574

    CAS  PubMed  Google Scholar 

  • Kim HJ, Han JH, Kim S, Lee HR, Shin JS, Kim JH, Cho J, Kim YH, Lee HJ, Kim BD, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058

    PubMed  Google Scholar 

  • Kosuge S, Inagaki Y, Okumura H (1965) Pungent principles in Capsicum. Nippon Nogei Kagaki Kaishi 35:540

    Google Scholar 

  • Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) A review on tissue culture and transgenesis. Biotechnol Adv 28:35–48

    CAS  PubMed  Google Scholar 

  • Kumar R, Dwivedi N, Singh RK, Kumar S, Rai VP, Singh M (2011) A review on molecular characterization of pepper for capsaicin and oleoresin. Int J Plant Breed Genet 5:99–110

    CAS  Google Scholar 

  • Kyle MM, Palloix A (1997) Proposed revision of nomenclature for potyvirus resistance genes in Capsicum. Euphytica 97:183–188

    Google Scholar 

  • Lang Y, Yanagawa S, Sasanuma T, Sasakuma T (2004) Orange fruit colour in Capsicum due to deletion of capsanthin–capsorubin synthesis gene. Breed Sci 54:33–39

    CAS  Google Scholar 

  • Lee SJ, Kim BD, Paek KH (1993) In vitro plant regeneration and Agrobacterium-mediated transformation from cotyledon explants of hot pepper (Capsicum annuum cv. Golden Tower). Korean J Plant Tiss Cult 20:289–294

    CAS  Google Scholar 

  • Lee JM, Nahm SH, Kim YM, Kim BD (2004) Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet 108:619–627

    CAS  PubMed  Google Scholar 

  • Lee CJ, Yoo EY, Shin J, Lee J, Hwang HS, Kim BD (2005) Nonpungent Capsicum contains a deletion in the capsaicinoid synthetase gene, which allows early detection of pungency with SCAR markers. Mol Cells 19:262–267

    CAS  PubMed  Google Scholar 

  • Lee J, Yoon JB, Park HG (2008) Linkage analysis between the partial restoration (pr) and the restorer-of-fertility (Rf) loci in pepper cytoplasmic male sterility. Theor Appl Genet 117:383–389

    CAS  PubMed  Google Scholar 

  • Lee YH, Jung M, Shin SH, Lee JH, Choi SH, Her NH, Lee JH, Ryu KH, Paek KY, Harn CH (2009) Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep 28:223–232

    CAS  PubMed  Google Scholar 

  • Lee J, Han JH, An CG, Lee WP, Yoon JB (2010a) A CAPS marker linked to a genic male-sterile gene in the colored sweet pepper, ‘Paprika’ (Capsicum annuum L.). Breed Sci 60:93–98

    CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Do JW, Ryu H, Kim SH, Park HG (2010b) A codominant SCAR marker linked to the genic male sterility gene (ms1) in chili pepper (Capsicum annuum). Plant Breed 129:35–38

    CAS  Google Scholar 

  • Lee J, Yoon JB, Han JH, Lee WP, Kim SH, Park HG (2010c) Three AFLP markers tightly linked to the genic male sterility ms3 gene in chili pepper (Capsicum annuum L.) and conversion to a CAPS marker. Euphytica 173:55–61

    CAS  Google Scholar 

  • Lefebvre V, Palloix A, Caranta C, Pochard E (1995) Construction of an intra-specific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome 38:112–121

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Kuntz M, Camara B, Palloix A (1998) The capsanthin–capsorubin synthase gene: a candidate gene for the y locus controlling the red fruit colour in pepper. Plant Mol Biol 36:785–789

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    CAS  PubMed  Google Scholar 

  • Lefebvre V, Daubeze AM, Voort RJ, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666

    CAS  PubMed  Google Scholar 

  • Leonards-Schippers C, Gieffers W, Schafer-Pregl R, Ritter E, Knapp S, Salamini F, Gebhardt C (1994) Quantitative resistance to Phytophthora infestans in potato: a case study for QTL mapping in an allogamous plant species. Genetics 137:67–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep 21:785–788

    CAS  PubMed  Google Scholar 

  • Li P, Feng B, Wang H, Tooley PW, Zhang X (2011) Isolation of nine Phytophthora capsici pectin methylesterase genes which are differentially expressed in various plant species. J Basic Microbiol 51:61–70

    CAS  PubMed  Google Scholar 

  • Li X, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou IS, Yoon MK, Lim YP (2013) Quantitative trait loci mapping in brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res 20:1–16

    PubMed Central  PubMed  Google Scholar 

  • Lim JH, Park CJ, Huh SU, Choi LM, Lee GJ, Kim YJ, Paek KH (2011) Capsicum annuum WRKYb transcription factor that binds to the CaPR-10 promoter functions as a positive regulator in innate immunity upon TMV infection. Biochem Biophys Res Comm 411:613–619

    CAS  PubMed  Google Scholar 

  • Lindsey K, Yeoman MM, Black GM, Mavituna F (1983) A novel method for the immobilization and culture of plant cells. FEBS Lett 155:143–149

    CAS  Google Scholar 

  • Liu W, Parrott WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364

    CAS  PubMed  Google Scholar 

  • Liu S, Li W, Wu Y, Chen C, Lei J (2013) De novo transcriptome assembly in chili pepper (Capsicum frutescens) to identify genes involved in the biosynthesis of capsaicinoids. PLoS ONE 8:e48156

    CAS  PubMed Central  PubMed  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth J, Wijk VR, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovato FA, Inoue-Nagata AK, Nagata T, de Avila AC, Pereira LA, Resende RO (2008) The N protein of Tomato spotted wilt virus (TSWV) is associated with the induction of programmed cell death (PCD) in Capsicum chinense plants, a hypersensitive host to TSWV infection. Virus Res 137:245–252

    CAS  PubMed  Google Scholar 

  • Lu FH, Cho MC, Park YJ (2012) Transcriptome profiling and molecular marker discovery in red pepper, Capsicum annuum L. TF68. Mol Biol Rep 39:3327–3335

    CAS  PubMed  Google Scholar 

  • Ma Y, Huang W, Ji JJ, Gong ZH, Yin CC, Ahmed SS, Zhao ZL (2013) Maintaining and restoration cytoplasmic male sterility systems in pepper (Capsicum annuum L.). Genet Mol Res 4:12

    Google Scholar 

  • Maga JA (1975) Capsicum. Crit Rev Food Sci Nutr 6:177–199

    CAS  Google Scholar 

  • Manoharan M, Sree Vidya CS, Lakshmi Sita G (1998) Agrobacterium-mediated genetic transformation in hot chilli (Capsicum annuum L. var. Pusa jwala). Plant Sci 131:77–83

    CAS  Google Scholar 

  • Margaria P, Ciuffo M, Pacifico D, Turina M (2007) Evidence that the nonstructural protein of Tomato spotted wilt virus is the avirulence determinant in the interaction with resistant pepper carrying the TSW gene. Mol Plant Microbe Interact 20:547–558

    CAS  PubMed  Google Scholar 

  • Matsunaga H, Saito T, Hirai M, Nunome T, Yoshida T (2003) DNA markers linked to Pepper mild mottle virus (PMMoV) resistant locus (L 4) in Capsicum. J Jpn Soc Hort Sci 72:218–220

    CAS  Google Scholar 

  • Mavituna F, Park JM (1985) Growth of immobilised plant cells in reticulate polyurethane foam matrices. Biotechnol Lett 7:637–640

    CAS  Google Scholar 

  • Mazourek M, Pujar A, Borovsky Y, Paran I, Mueller L, Jahn MM (2009) A dynamic interface for capsaicinoid systems biology. Plant Physiol 150:1806–1821

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mezghani N, Jemmali A, Elloumi N, Gargouri-Bouzid R, Kintzios S (2007) Morphohistological study on shoot bud regeneration in cotyledon cultures of pepper (Capsicum annuum). Biol Bratislava 2:704–710

    Google Scholar 

  • Mimura Y, Inoue T, Minamiyama Y, Kubo N (2012) An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed Sci 62:93–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minamiyama Y, Kinoshita S, Inaba K, Inoue M (2005) Development of a cleaved amplified polymorphic sequence (CAPS) marker linked to pungency in pepper. Plant Breed 24:288–291

    Google Scholar 

  • Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A (2000) A CAPS marker to assist selection of Tomato spotted wilt virus (TSWV) in pepper. Genome 43:943–951

    Google Scholar 

  • Moury B, Fabre F, Senoussi R (2007) Estimation of the number of virus particles transmitted by an insect vector. Proc Nat Acad Sci USA 104:17891–17896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mueller AL, Solow TH, Taylor N, Skwarecki B, Buels R, Bins J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL Genomics Network (SGN): a comparative resource for Solanaceous biology and beyond. Plant Physiol 138:1310–1317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Murphy JF, Blauth JR, Livingstone KD, Lackney VK, Jahn MK (1998) Genetic mapping of the pvr1 locus in Capsicum spp. And evidence that distinct potyvirus resistance loci control responses that differ at the whole plant and cellular levels. Mol Plant Micro Inter 11:943–951

    CAS  Google Scholar 

  • Nicolaï M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11:2295–2300. doi:10.4238/2012

    PubMed  Google Scholar 

  • Nunez-Palenius HG, Ochoa-Alejo N (2005) Effect of phenylalanine and phenylpropanoids on the accumulation of capsaicinoids and lignins in cell cultures of chili peppers (Capsicum annum L.). In Vitro Dev Biol Plant 41:801–805

    CAS  Google Scholar 

  • Ochoa-Alejo N, Gómez-Peralta JE (1993) Activity of enzymes involved in capsaicin biosynthesis in callus tissue and fruits of chili pepper (Capsicum annuum L.). J Plant Physiol 141:147–152

    CAS  Google Scholar 

  • Ochoa-Alejo N, Salgado-Garciglia R (1992) Phenylalanine ammonia-lyase activity and capsaicin-precursor compounds in p-fluorophenylalanine-resistant and sensitive variant cells of chili pepper (Capsicum annuum). Physiol Plant 85:173–179

    CAS  Google Scholar 

  • Ogundiwin EA, Berke M, Massoudi TF, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711

    CAS  PubMed  Google Scholar 

  • Oh SK, Baek KH, Seong ES, Joung YH, Choi GJ, Park JM, Cho HS, Kim EA, Lee S, Choi D (2010) CaMsrB2, pepper methionine sulfoxide reductase B2, is a novel defense regulator against oxidative stress and pathogen attack. Plant Physiol 154:245–261

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ortega RG, Espanol CP, Zueco JC (1992) Genetic relationships among 4 pepper genotypes resistant to Phytophthora capsici. Plant Breed 108:118–125

    Google Scholar 

  • Paran I, Van der Knaap E (2007) Genetic and molecular regulation of fruit and plant domestication traits in tomato and pepper. J Exp Bot 58:3841–3852

    CAS  PubMed  Google Scholar 

  • Paran I, Van der Voort JR, Lefebvre V, Jahn M, Landry L, Van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper (Capsicum spp.). Mol Breed 13:251–261

    CAS  Google Scholar 

  • Peddaboina V, Christopher T, Subhash K (2006) In vitro shoot multiplication and plant regeneration in four Capsicum species using thidiazuron. Sci Hort 2:117–122

    Google Scholar 

  • Perry L, Dickau R, Zarrillo S, Holst I, Pearsal DM, Piperno DR, Berman MJ, Cooke RG, Rademaker K, Ranere AJ, Raymond JS, Sandweiss DH, Scaramelli F, Tarble K, Zeidler JA (2007) Starch fossils and the domestication and dispersal of chili peppers (Capsicum spp. L.) in the Americas. Science 315:986–988

    CAS  PubMed  Google Scholar 

  • Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001) Defense response genes co-localize with quantitative disease resistance loci in pepper. Theor Appl Genet 103:920–929

    CAS  Google Scholar 

  • Phillips GC, Valera-Montero LL, Fan Z, Jayashankar S, Hubstenberger JF, Watkins DD (2000) Chile improvement through biotechnology: in vitro plant regeneration and genetic transformation. New Mexico Chile Pepper Institute: Chile Conference, Las Cruces

  • Pierre M, Noel L, Lahaye T, Ballvora A, Veuskens J, Ganal M, Bonas U (2000) High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthomonas campestris pv vesicatora AvrBs3 protein. Theor Appl Genet 101:255–263

    CAS  Google Scholar 

  • Pochard E, Dumas de Valuix R, Florent A (1983) Linkage between partial resistance to CMV and susceptibility to TMV in the line perennial: analysis on androgenetic homozygous lines. Capsicum Eggplant News 2:34–35

    Google Scholar 

  • Popovsky S, Paran I (2000) Molecular analysis of the Y locus in pepper: its relation to capsanthin–capsorubin synthase and to fruit color. Theor Appl Genet 101:86–89

    CAS  Google Scholar 

  • Portis E, Nagy I, Sasva Z, Stagelri A, Barchi L, Lanteri S (2007) The design of Capsicum spp. SSR assays via analysis of in silico DNA sequence, and their potential utility for genetic mapping. Plant Sci 172:640–648

    CAS  Google Scholar 

  • Pruthi JS (1980) Spices and condiments-chemistry, microbiology and technology. Academic Press Inc., New York, pp 1–450

    Google Scholar 

  • Purkayastha J, Alam SI, Gogoi HK, Singh L (2012) Capsicum assamicum sp. nov. Solanaceae, from Assam, Northeastern India. Ozean J App Sci 5:1

    Google Scholar 

  • Quirin EA, Ogundiwin EA, Prince JP, Mazourek M, Briggs MO, Chlanda TS, Kim KT, Falise M, Kang BC, Jahn MM (2005) Development of sequence characterized amplified region (SCAR) primers for the detection of Phyto. 5.2, a major QTL for resistance to Phytophthora capsici Leon. in pepper. Theor Appl Genet 110:605–612

    CAS  PubMed  Google Scholar 

  • Rao GU, Chaim AB, Borovsky E, Paran I (2003) Mapping of yield related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet 106:1457–1466

    CAS  PubMed  Google Scholar 

  • Ravishankar GA, Sarma KS, Venkataraman LV, Kadyan AK (1998) Effect of nutritional stress on capsaicin production in immobilized cell cultures of Capsicum annuum. Curr Sci 57:381–383L

    Google Scholar 

  • Reddy OB, Giridhar P, Ravishankar GA (2002) The effect of triacontanol on micropropagation of Capsicum frutescens and Decalepis hamiltonii W and A. Plant Cell Tiss Organ Cult 71:253–258

    Google Scholar 

  • Reeves G, Monroy-Barbosa A, Bosland PW (2013) A novel Capsicum gene inhibits host-specific disease resistance to Phytophthora capsici. Phytopathology 103:472–478. doi:10.1094/PHYTO-09-12-0242-R

    CAS  PubMed  Google Scholar 

  • Ristaino JB (1990) Interspecific variation among isolates of Phytophthora capsici from pepper and cucurbit fields in North Carolina. Phytopathology 80:1253–1259

    Google Scholar 

  • Rodriguez-Uribe L, Guzman I, Rajapakse W, Richins RD, O’Connell MA (2012) Carotenoid accumulation in orange-pigmented Capsicum annuum fruit, regulated at multiple levels. J Exp Bot 63:517–526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rubio M, Caranta C, Palloix A (2008) Functional markers for selection of potyvirus resistance alleles at the pvr2-eIF4E locus in pepper using tetra-primer ARMS-PCR. Genome 51:767–771

    CAS  PubMed  Google Scholar 

  • Rubio M, Nicolaï M, Caranta C, Palloix A (2009) Allele mining in the pepper gene pool provided new complementation effects between pvr2-eIF4E and pvr6-eIF(iso)4E alleles for resistance to pepper veinal mottle virus. J Gen Virol 90:2808–2814

    CAS  PubMed  Google Scholar 

  • Ruffel S, Dussault MH, Palloix A, Moury B, Bendahmane A, Robaglia C, Caranta C (2002) A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J 32:1067–1075

    CAS  PubMed  Google Scholar 

  • Ruffel S, Gallois JL, Moury B, Robaglia C, Palloix A, Caranta C (2006) Simultaneous mutations in translation initiation factors eIF4E and eIF(iso)4E are required to prevent pepper veinal mottle virus infection of pepper. J Gen Virol 87:2089–2098

    CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    CAS  PubMed  Google Scholar 

  • Salgado-Garciglia R, Ochoa-Alejo N (1990) Increased capsaicin content in PFP resistant cells of chili pepper (Capsicum annuum L.). Plant Cell Rep 8:617–620

    CAS  PubMed  Google Scholar 

  • Sanatombi K, Sharma GJ (2008) In vitro propagation of Capsicum chinense Jacq. Biol Plant 52:517–520

    CAS  Google Scholar 

  • Sandbrik JM, Colon LT, Wolters PJCC, Stiekema WJ (2000) Two related genotypes of Solanum microdontum carry different segregating alleles for field resistance to Phytophthora infestans. Mol Breed 6:215–225

    Google Scholar 

  • Sanwen H, Baoxi Z, Milbourne D, Cardle L, Guimei Y, Jiazhen G (2001) Development of pepper SSR markers from sequence databases. Euphytica 117:163–167

    Google Scholar 

  • Seo EY, Yeom SI, Jo SH, Jeong HJ, Kang BC, Choi DI (2013) Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana. Mol Cells 33:415–422

    Google Scholar 

  • Sharma A, Kumar V, Giridhar P, Ravishankar GA (2008) Induction of in vitro flowering in Capsicum frutescens under the influence of silver nitrate and cobalt chloride and pollen transformation. Electronic J Biotechnol (online) 11(2). doi:10.2225/vol11-issue2-fulltext-8

  • Shirasawa K, Ishii K, Kim C, Ban T, Suzuki M, Ito T, Muranaka T, Kobayashi M, Nagata N, Isobe S, Tabata S (2013) Development of Capsicum EST–SSR markers for species identification and in silico mapping onto the tomato genome sequence. Mol Breed 31:101–110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Solís-Ramos LY, González-Estrada T, Nahuath-Dzib S, Zapata-Rodriguez LC, Castaño E (2009) Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tiss Organ Cult 96:279–287

    Google Scholar 

  • Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM (2005) The Pun1 gene for pungency in pepper encodes a putative acyltransferase. Plant J 42:675–688

    CAS  PubMed  Google Scholar 

  • Stewart C, Mazourek M, Stellari GM, O’Connell M, Jahn M (2007) Genetic control of pungency in Capsicum chinense via the Pun1 locus. J Exp Bot 58:979–991

    CAS  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2002) Influence of calcium channel modulators in capsaicin production by cell suspension cultures of Capsicum frutescens Mill. Curr Sci 83:480–484

    CAS  Google Scholar 

  • Sugita T, Kinoshita T, Kawano T, Yuji K, Yamaguchi K, Nagata R, Shimizu A, Chen L, Kawasaki S, Todoroki A (2005) Rapid construction of a linkage map using high-efficiency genome scanning/AFLP and RAPD, based on an intraspecific, doubled-haploid population of Capsicum annuum. Breed Sci 55:287–295

    CAS  Google Scholar 

  • Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y, Yoshimoto E, Maehata Y, Fukuoka H, Nagata R, Ohyama A (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breed 4:909–920

    Google Scholar 

  • Tai T, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC, Stall RE, Staskawicz BJ (1999a) Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96:14153–14158

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tai T, Dahlbeck D, Stall RE, Peleman J, Staskawicz BJ (1999b) High-resolution genetic and physical mapping of the region containing the Bs2 resistance gene of pepper. Theor Appl Genet 99:1201–1206

    CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tecle IY, Menda N, Buels RM, van der Knaap E, Mueller LA (2010) solQTL: a tool for QTL analysis, visualization and linking to genomes at SGN database. BMC Bioinformatics 11:525

    PubMed Central  PubMed  Google Scholar 

  • Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature. doi:10.1038/nature10158

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  • Thies JA, Fery RL (2000) Characterization of resistance conferred by the N gene to Meloidogyne arenaria races 1 and 2, M. hapla, and M. javanica in two sets of isogenic lines of Capsicum annuum. J Am Soc Hort Sci 125:71–75

    Google Scholar 

  • Thies JA, Fery RL (2002) Heat stability of resistance to southern root-knot nematode in bell pepper genotypes homozygous and heterozygous for the N gene. J Am Soc Hort Sci 127(3):371–375

    CAS  Google Scholar 

  • Thorup T, Tanyolac B, Livingstone K, Popovsky S, Paran I, Jahn M (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Nat Acad Sci USA 97:11192–11197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tomita R, Murai J, Miura Y, Ishihara H, Liu S, Kubotera Y, Honda A, Hatta R, Kuroda T, Hamada H, Sakamoto M, Munemura I, Nunomura O, Ishikawa K, Genda Y, Kawasaki S, Suzuki K, Meksem K, Kobayashi K (2008) Fine mapping and DNA fiber FISH analysis locates the tobamovirus resistance gene L3 of Capsicum chinense in a 400-kb region of R-like genes cluster embedded in highly repetitive sequences. Theor Appl Genet 117:1107–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tsaballa A, Pasentsis K, Darzentas N, Tsaftaris A (2011) Multiple evidence for the role of an Ovate-like gene in determining fruit shape in pepper. BMC Plant Biol 11:46

    CAS  PubMed Central  PubMed  Google Scholar 

  • USDA-ARS (2011) Grin species records of Capsicum. National Germplasm Resources Laboratory, Beltsville, Maryland

  • Vallejos CE, Jones V, Stall RE, Jones JB, Minsavage GV, Schultz DC, Rodrigues R, Olsen LE, Mazourek M (2010) Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor Appl Genet 121:37–46

    CAS  PubMed  Google Scholar 

  • Venkataiah P, Christopher T, Subhash K (2003) Thidiauron induced high frequency adventitious shoot formation and plant regeneration in Capsicum annum L. Plant Biotechnol 5:245–250

    Google Scholar 

  • Voorrips RE, Finkers R, Sanjaya Lia (2004) QTL mapping of anthracnose (Colletotri-chum spp.) resistance in a cross between. Capsicum annuum and C. chinense. Theor Appl Genet 109:1275–1282

    PubMed  Google Scholar 

  • Wang LH, Zhang BX, Lefebvre V, Huang SW, Daubeze AM, Palloix A (2004) QTL analysis of fertility restoration in cytoplasmic male sterile pepper. Theor Appl Genet 109:1058–1063

    CAS  PubMed  Google Scholar 

  • Wang X, Zhu X, Tooley P, Zhang X (2013) Cloning and functional analysis of three genes encoding polygalacturonase-inhibiting proteins from Capsicum annuum and transgenic CaPGIP1 in tobacco in relation to increased resistance to two fungal pathogens. Plant Mol Biol 81:379–400

    CAS  PubMed  Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M, Jahn MM, Tanksley SD (2009a) A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    CAS  PubMed  Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Tanksley SD (2009b) A detailed synteny map of the eggplant genome based on conserved ortholog set II (COSII) markers. Theor Appl Genet. doi:10.1007/s00122-008-0590-9

    PubMed Central  Google Scholar 

  • Yarnes SC, Ashrafi H, Reyes-Chin-Wo S, Hill TA, Stoffel KM, Van Deynze A (2013) Identification of QTLs for capsaicinoids, fruit quality, and plant architecture-related traits in an interspecific Capsicum RIL population. Genome 56(1):61–74

    CAS  PubMed  Google Scholar 

  • Yi G, Lee J, Lee S, Choi D, Kim B-D (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130

    CAS  PubMed  Google Scholar 

  • Zhang YL, Jia QL, Li DW, Wang JE, Yin YX, Gong ZH (2013) Characteristic of the pepper CaRGA2 gene in defense responses against Phytophthora capsici Leonian. Int J Mol Sci 14:8985–9004

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu YX, Ou-Yang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75

    CAS  PubMed  Google Scholar 

  • Zygier S, Ben Chaim A, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Biotechnology, Ministry of Science and Technology, Goverment of India, in the form of prestigious Ramalingaswami Fellowship cum Project Grant (No. BT/RLF/Re-entry/46/2011) to Nirala Ramchiary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirala Ramchiary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramchiary, N., Kehie, M., Brahma, V. et al. Application of genetics and genomics towards Capsicum translational research. Plant Biotechnol Rep 8, 101–123 (2014). https://doi.org/10.1007/s11816-013-0306-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-013-0306-z

Keywords

Navigation