Skip to main content
Log in

Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

MicroRNA156 (miR156) is a regulator of flowering time and biomass production through regulation of members of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. To expand our investigations on the utility of miR156 in alfalfa, we generated transgenic alfalfa expressing a heterologous miR156 from Lotus japonicus (LjmiR156a). 5′ RACE and qRT-PCR analysis confirmed that the same three SPL genes (MsSPL6, MsSPL12, and MsSPL13) targeted by MsmiR156d are also targets of LjmiR156a in alfalfa. Ectopic expression of LjmiR156a down-regulated these SPL genes in transgenic alfalfa, coupled with reduced internode length, a more extreme delay in flowering time than occurred with MsmiR156d, enhanced shoot branching, and elevated biomass production. While root length was maintained, nodulation was reduced in some transgenic genotypes. Furthermore, heterologous expression of LjmiR156a enhanced the contents of starch, soluble sugars, and phenolics in all transgenic genotypes in contrast to the impact from MsmiR156d enhancement, even though the effects on lignin, cellulose, pectin, structural sugars, flavonoids, and carotenoids were variable among the new alfalfa genotypes. The variations among the traits/genotypes reflect the change in expression of alfalfa SPL genes targeted by LjmiR156a and show that LjmiR156a could be employed as a tool to improve quality and yield of alfalfa biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander TW, Reuter T, McAllister TA (2007) Qualitative and quantitative polymerase chain reaction assays for an alfalfa (Medicago sativa)-specific reference gene to use in monitoring transgenic cultivars. J Agr Food Chem 55:2918–2922

    Article  CAS  Google Scholar 

  • Amissah N, Akakpo B, Yeboah J, Blay E (2013) Asexual propagation of sheanut tree (Vitellaria paradoxa CF Gaertn) using a container layering. AJPS 4:1758–1764

    Article  Google Scholar 

  • Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A (2015) MicroRNA156 as a promising tool for alfalfa improvement. Plant Biotechnol J 13:779–790

    Article  CAS  PubMed  Google Scholar 

  • Badhan A, Jin L, Wang Y, Han S, Kowalczys K, Brown DC, Ayala CJ, Latoszek-Green M, Miki B, Tsang A, McAllister T (2014) Expression of a fungal ferulic acid esterase in alfalfa modifies cell wall digestibility. Biotechnol Biofuels 7:39

    Article  PubMed Central  PubMed  Google Scholar 

  • Brinkmann K, Blaschke L, Polle A (2002) Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J Chem Ecol 28:2483–2501

    Article  CAS  PubMed  Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioprod Bioref 6:580–598

    Article  CAS  Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622

    Article  CAS  PubMed  Google Scholar 

  • Cardon G, Hohmann S, Klein J, Nettesheim K, Saedler H, Huijser P (1999) Molecular characterisation of the Arabidopsis SBP-box genes. Gene 237:91–104

    Article  CAS  PubMed  Google Scholar 

  • Cash D (2009) Alfalfa management guide for ningxia. In: Chapter 1: global status and development trends of alfalfa. FAO p 1–110

  • Curaba J, Singh MB, Bhalla PL (2014) miRNAs in the crosstalk between phytohormone signalling pathways. J Exp Bot 65:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Devers EA, Branscheid A, May P, Krajinski F (2011) Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis. Plant Physiol 156:1990–2010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dewanto V, Wu X, Adom KK, Liu RH (2002) Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agr Food Chem 50:3010

    Article  CAS  Google Scholar 

  • Duceppe M-O, Bertrand A, Pattathil S, Miller J, Castonguay Y, Hahn MG, Michaud R, Dubé MP (2012) Assessment of genetic variability of cell wall degradability for the selection of alfalfa with improved saccharification efficiency. Bioenerg Res 5:904

    Article  CAS  Google Scholar 

  • Ferreira e Silva GF, Silva EM, Azevedo Mda S, Guivin MA, Ramiro DA, Figueiredo CR, Carrer H, Peres LE, Nogueira FT (2014) microRNA156-targeted SPL/SBP box transcription factors regulate tomato ovary and fruit development. Plant J 78:604–618

    Article  CAS  PubMed  Google Scholar 

  • Filisetti-Cozzi TM, Carpita NC (1991) Measurement of uronic acids without interference from neutral sugars. Anal Biochem 197:157–162

    Article  CAS  PubMed  Google Scholar 

  • Foster CE, Martin TM, Pauly M (2010) Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part i: lignin. J Vis Exp 37:e1745

    Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DGJ, Stewart CN Jr, Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L) results in various morphological alterations and leads to improved biomass production. Plant Biotech J 10:443–452

    Article  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Hohmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49:683–693

    Article  CAS  PubMed  Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D, Wang JW (2011) Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant cell 23:1512–1522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gutterson N (1995) Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression. HortScience 30:964–966

    CAS  Google Scholar 

  • Hatfield RD, Weimer PJ (1995) Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. J Sci Food Agric 69:185–196

    Article  CAS  Google Scholar 

  • Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jiang L (2011) Hybridization, genetic manipulation and asexual propagation of lychins species. MSc Thesis, Oklahoma State University

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  CAS  PubMed  Google Scholar 

  • Kim MY, Kang YJ, Lee T, Lee S-H (2013) Divergence of flowering-related genes in three legume species. Plant Genome. doi:10.3835/plantgenome2013030008

    Google Scholar 

  • Lamb JFS, Sheaffer CC, Rhodes LH, Sulc RM, Undersander DJ, Brummer EC (2006) Five decades of alfalfa cultivar improvement. Crop Sci 46:902–909

    Article  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  • Li H, Deng Y, Wu T, Subramanian S, Yu O (2010) Misexpression of miR482, miR1512, and miR1515 increases soybean nodulation. Plant Physiol 153:1759–1770

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{{ - \varDelta \varDelta_{CT} }}\) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948

    Article  CAS  PubMed  Google Scholar 

  • Martin RC, Asahina M, Liu P-P, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martinez-Andujar C, Kumar MBA, Pupel P, Nonogaki H (2010a) The microRNA156 and microRNA172 gene regulation cascades at post-germinative stages in Arabidopsis. Seed Sci Res 20:79–87

    Article  CAS  Google Scholar 

  • Martin RC, Asahina M, Liu P-P, Kristof JR, Coppersmith JL, Pluskota WE, Bassel GW, Goloviznina NA, Nguyen TT, Martínez-Andújar C, Kumar MBA, Pupel P, Nonogaki H (2010b) The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis. Seed Sci Res 20:89–96

    Article  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Griffiths-Jones S, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Milev I, Yahubyan G, Minkov I, Baev V (2011) miRTour: plant miRNA and target prediction tool. Bioinformation 6:248–249

    Article  PubMed Central  PubMed  Google Scholar 

  • Naya L, Khan GA, Sorin C, Hartmann C, Crespi M, Lelandais-Briere C (2010) Cleavage of a non-conserved target by a specific miR156 isoform in root apexes of Medicago truncatula. Plant Signal Behav 5:328–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP (2013) Novel positive regulatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptor-mediated plant innate immunity. PLoS Pathog 9:e1003235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Samac DA, Litterer L, Temple G, Jung HJ, Somers DA (2004) Expression of UDP-glucose dehydrogenase reduces cell-wall polysaccharide concentration and increases xylose content in alfalfa stems. Appl Biochem Biotech 1167:113–116

    Google Scholar 

  • Selig M, Weiss N, Ji Y (2008) Enzymatic saccharification of lignocellulosic biomass In: NREL (ed) Laboratory Analytical Procedure (LAP). Technical Report 1

  • Senthilkumar S, Kumar N, Soorianathasundaram K, Jeya Kumar P (2014) Aspects on asexual propagation in papaya (Carica papaya L)—a review. Agri Rev 35:307–313

    Article  Google Scholar 

  • Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci USA 108:6300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  CAS  PubMed  Google Scholar 

  • Taylor S, Wakem M, Dijkman G, Alsarraj M, Nguyen M (2010) A practical approach to RT-qPCR-Publishing data that conform to the MIQE guidelines. Methods 50:S1–S5

    Article  CAS  PubMed  Google Scholar 

  • Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. J AOAC Int 78:1030–1044

    CAS  PubMed  Google Scholar 

  • Tian L, Wang H, Wu K, Latoszek-Green M, Hu M, Miki B, Brwon DCW (2002) Efficient recovery of transgenic plants through organogenesis and embryogenesis using a cryptic promoter to drive marker gene expression. Plant Cell Rep 20:1181–1187

    Article  CAS  Google Scholar 

  • Updegraff DM (1969) Semimicro determination of cellulose in biological materials. Anal Biochem 32:20–24

    Article  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed Central  PubMed  Google Scholar 

  • Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  CAS  PubMed  Google Scholar 

  • Volenec JJ, Cunningham SM, Haagenson DM, Berg WK, Joern BC, Wiersma DW (2002) Physiological genetics of alfalfa improvement: past failures, future prospects. Field Crop Res 75:97–110

    Article  Google Scholar 

  • Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang Z, Amyot L, Tian L, Xu Z, Gruber MY, Hannoufa A (2014) Ectopic expression of miR156 represses nodulation and causes morphological and developmental changes in Lotus japonicus. Mol Genet Genom. doi:10.1007/s00438-014-0931-4

    Google Scholar 

  • Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agr Food Chem 58:9572–9578

    Article  CAS  Google Scholar 

  • Wei S, Gruber MY, Yu B, Gao MJ, Khachatourians GG, Hegedus DD, Parkin IAP, Hannoufa A (2012) Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biol 12:169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu G, Poethig RS (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xing S, Salinas M, Hohmann S, Berndtgen R, Huijser P (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant cell 22:3935–3950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan Z, Hossain MS, Wang J, Valdes-Lopez O, Liang Y, Libault M, Qiu L, Stacey G (2013) miR172 regulates soybean nodulation. MPMI 26:1371–1377

    Article  CAS  PubMed  Google Scholar 

  • Yant L, Mathieu J, Dinh TT, Ott F, Lanz C, Wollmann H, Cheng H, Schmid M (2010) Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2. Plant cell 22:2156–2170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu B, Lydiate DJ, Young LW, Schafer UA, Hannoufa A (2008) Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Res 17:573

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zou Z, Zhang J, Zhang Y, Han Q, Hu T, Xu X, Liu H, Li H, Ye Z (2011) Over-expression of sly-miR156a in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Luo H (2013) MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Plant Mol Biol 83:59–75

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Technical assistance for isolation of LjmiR156a precursor from Ying Wang is greatly appreciated. We thank Alex Molnar for his help with preparing the figures and M. Udvari (Noble Foundation, Ardmore, OK) for a kind gift of S. meliloti SM1021. This project was funded by a Grant from the National Science and Engineering Research Council to AH and a Grant from Agriculture and Agri-Food Canada to MYG and AH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelali Hannoufa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Validation of miR156 targets in alfalfa using 5′ RLM-RACE PCR. 1st refers to outer PCR products whereas 2nd represents inner PCR products from each SPL gene. Ladder; HyperLadder II DNA ladder (TIFF 388 kb)

Fig. S2

Analysis of mature miR156 using stem-loop qRT-PCR (TIFF 18 kb)

Fig. S3

Effects of LjmiR156a on shoot branching in 40-day-old alfalfa genotypes (TIFF 2840 kb)

Fig. S4

Effects of LjmiR156a on shoot branching in two-month-old alfalfa genotypes (TIFF 2346 kb)

Fig. S5

Effects of LjmiR156a on stem thickness in alfalfa. a phenotypes of alfalfa stems, b quantitative measurement of stem thickness measured at six months after propagation (TIFF 438 kb)

Table S1

Primers used in this work (DOCX 21 kb)

Table S2

Effects of LjmiR156a on root generating capacity (DOCX 13 kb)

Table S3

Effects of LjmiR156a on structural and non-structural carbohydrates contents in six-month-old transgenic alfalfa (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aung, B., Gruber, M.Y., Amyot, L. et al. Ectopic expression of LjmiR156 delays flowering, enhances shoot branching, and improves forage quality in alfalfa. Plant Biotechnol Rep 9, 379–393 (2015). https://doi.org/10.1007/s11816-015-0375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-015-0375-2

Keywords

Navigation