Skip to main content
Log in

Analysis of Gaseous Hydrogen Refueling Process to Develop Thermodynamic Model

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Hydrogen is an energy source that is expected to play a major role in energy transition policies that replace fossil fuels. Currently, the main demand for hydrogen is the transportation sector. As the number of fuel cell electric vehicles increases, it has become essential to develop a hydrogen refueling protocol which is a method of safely filling hydrogen associated with hydrogen refueling stations. Hydrogen refueling protocols are proposed to be developed based on thermodynamic models and verified through experimental studies. Developing a simulation model requires thermodynamic analysis of the hydrogen filling process, but such research has not been conducted. In this study, thermodynamic phenomena are analyzed, which take place during the high-pressure hydrogen refueling process using a generic correlation equation with different coefficients corresponding to various thermodynamic properties. By quantitatively analyzing the Joule-Thompson effect which occurs when hydrogen is supplied to an on-board tank, the degree of temperature rise is estimated depending on the hydrogen refueling station operation method. The quantitative contribution of kinetic energy is also analyzed. The kinetic energy is often ignored in a governing equation of thermodynamic models expressed as an energy balance but it is revealed that the term cannot be ignored in high-flow filling process. Inaccuracy which arises when stagnation enthalpy is used instead of static enthalpy in a thermodynamic model is also reviewed, providing a basis for developing a new thermodynamic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Höök, X. Tang, Energy Policy 52, 797 (2013)

    Article  Google Scholar 

  2. N.Z. Muradov, T.N. Veziroğlu, Int. J. Hydrogen Energy 33, 6804 (2008)

    Article  CAS  Google Scholar 

  3. S. Dunn, Int. J. Hydrogen Energy 27, 235 (2002)

    Article  CAS  Google Scholar 

  4. C.C. Elam, C.E.G. Padró, G. Sandrock, A. Luzzi, P. Lindblad, E.F. Hagen, Int. J. Hydrogen Energy 28, 601 (2003)

    Article  CAS  Google Scholar 

  5. G. Marbán, T. Valdés-Solís, Int. J. Hydrogen Energy 32, 1625 (2007)

    Article  Google Scholar 

  6. J. Blazquez, R. Fuentes, B. Manzano, Energy Policy 147, 111807 (2020)

    Article  Google Scholar 

  7. J. Tian, L. Yu, R. Xue, S. Zhuang, Y. Shan, Appl. Energy 307, 118205 (2022)

    Article  CAS  PubMed  Google Scholar 

  8. A. Kovač, M. Paranos, D. Marciuš, Int. J. Hydrogen Energy 46, 10016 (2021)

    Article  Google Scholar 

  9. A. Arcos-Vargas, The role of the electric vehicle in the energy transition: a multidimensional approach (Springer Nature, Berlin, 2020)

    Google Scholar 

  10. A. Dall-Orsoletta, P. Ferreira, G.G. Dranka, Energy Convers. Manag.: X 16, 100271 (2022)

    CAS  Google Scholar 

  11. D. Wickham, A. Hawkes, F. Jalil-Vega, Appl. Energy 305, 117740 (2022)

    Article  CAS  Google Scholar 

  12. M. Muthukumar, N. Rengarajan, B. Velliyangiri, M. Omprakas, C. Rohit, U.K. Raja, Mater. Today: Proc. 45, 1181 (2021)

    Google Scholar 

  13. A. Pramuanjaroenkij, S. Kakaç, Int. J. Hydrogen Energy 48, 9401 (2023)

    Article  CAS  Google Scholar 

  14. M. Ball, M. Weeda, Int. J. Hydrogen Energy 40, 7903 (2015)

    Article  CAS  Google Scholar 

  15. S. Singh, S. Jain, P. Venkateswaran, A.K. Tiwari, M.R. Nouni, J.K. Pandey, S. Goel, Renew. Sustain. Energy Rev. 51, 623 (2015)

    Article  CAS  Google Scholar 

  16. R. Gupta, M. F. Jalil, “An overview of using hydrogen in transportation sector as fuel", Renewable Power for Sustainable Growth: Proceedings of International Conference on Renewal Power (ICRP 2020), (Springer, 2021), pp. 509–517

  17. T. Stangarone, Clean Technol. Environ. Policy 23, 509 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. J.-H. Lee, J. Woo, Sustainability 12, 10191 (2020)

    Article  Google Scholar 

  19. J.-E. Shin, Energies 15, 8983 (2022)

    Article  CAS  Google Scholar 

  20. J. Alazemi, J. Andrews, Renew. Sustain. Energy Rev. 48, 483 (2015)

    Article  CAS  Google Scholar 

  21. X. Wang, J. Fu, Z. Liu, J. Liu, Int. J. Hydrogen Energy 48, 1904 (2023)

    Article  CAS  Google Scholar 

  22. SOA Engineers, Fueling protocols for light duty gaseous hydrogen surface vehicles (SAE International, Warrendale, 2016)

    Google Scholar 

  23. C.K. Chae, B.H. Park, Y.S. Huh, S.K. Kang, S.Y. Kang, H.N. Kim, Int. J. Hydrogen Energy 45, 15390 (2020)

    Article  CAS  Google Scholar 

  24. C.K. Chae, B.H. Park, S.K. Kang, J.-O. Choi, J.H. Park, W. Won, Y. Kim, Korean J. Chem. Eng. 39, 2916 (2022)

    Article  CAS  Google Scholar 

  25. T. Bourgeois, F. Ammouri, D. Baraldi, P. Moretto, Int. J. Hydrogen Energy 43, 2268 (2018)

    Article  CAS  Google Scholar 

  26. R. Caponi, A.M. Ferrario, E. Bocci, G. Valenti, M.D. Pietra, Int. J. Hydrogen Energy 46, 18630 (2021)

    Article  CAS  Google Scholar 

  27. E. Rothuizen, W. Mérida, M. Rokni, M. Wistoft-Ibsen, Int. J. Hydrogen Energy 38, 4221 (2013)

    Article  CAS  Google Scholar 

  28. M.-S. Kim, H.-K. Jeon, K.-W. Lee, J.-H. Ryu, S.-W. Choi, Appl. Sci. 12, 4856 (2022)

    Article  CAS  Google Scholar 

  29. H. Li, Z. Lyu, Y. Liu, M. Han, H. Li, Int. J. Hydrogen Energy 46, 10396 (2021)

    Article  CAS  Google Scholar 

  30. V. Ramasamy, E. Richardson, Int. J. Heat Mass Transf. 160, 120179 (2020)

    Article  CAS  Google Scholar 

  31. J. Liu, S. Zheng, Z. Zhang, J. Zheng, Y. Zhao, Int. J. Hydrogen Energy 45, 9241 (2020)

    Article  CAS  Google Scholar 

  32. Y. Wang, C. Decès-Petit, Int. J. Hydrogen Energy 45, 32743 (2020)

    Article  CAS  Google Scholar 

  33. J. Xiao, C. Bi, P. Bénard, R. Chahine, Y. Zong, M. Luo, T. Yang, Int. J. Hydrogen Energy 46, 2936 (2021)

    Article  CAS  Google Scholar 

  34. H. Tun, K. Reddi, A. Elgowainy, S. Poudel, Int. J. Hydrogen Energy 48, 28869 (2023)

    Article  CAS  Google Scholar 

  35. B.H. Park, D.H. Lee, Korean J. Chem. Eng. 39, 902 (2022)

    Article  CAS  Google Scholar 

  36. T. Kuroki, K. Nagasawa, M. Peters, D. Leighton, J. Kurtz, N. Sakoda, M. Monde, Y. Takata, Int. J. Hydrogen Energy 46, 22004 (2021)

    Article  CAS  Google Scholar 

  37. Y. Kang, S.M. Cho, D.K. Kim, Int. J. Hydrogen Energy 46, 9174 (2021)

    Article  CAS  Google Scholar 

  38. J.C. Yang, Int. J. Hydrogen Energy 34, 6712 (2009)

    Article  CAS  Google Scholar 

  39. C.N. Ranong, S. Maus, J. Hapke, G. Fieg, D. Wenger, Heat Transfer Eng. 32, 127 (2011)

    Article  CAS  Google Scholar 

  40. F. Olmos, V.I. Manousiouthakis, Int. J. Hydrogen Energy 38, 3401 (2013)

    Article  CAS  Google Scholar 

  41. E. Ruffio, D. Saury, D. Petit, Int. J. Hydrogen Energy 39, 12701 (2014)

    Article  CAS  Google Scholar 

  42. Y.-L. Liu, Y.-Z. Zhao, L. Zhao, X. Li, H.-G. Chen, L.-F. Zhang, H. Zhao, R.-H. Sheng, T. Xie, D.-H. Hu, Int. J. Hydrogen Energy 35, 2627 (2010)

    Article  CAS  Google Scholar 

  43. C. Dicken, W. Merida, J. Power. Sources 165, 324 (2007)

    Article  CAS  Google Scholar 

  44. M. Monde, Y. Mitsutake, P. L. Woodfield, S. Maruyama, Heat Transfer—Asian Research: Co‐sponsored by the Society of Chemical Engineers of Japan and the Heat Transfer Division of ASME, 36, 13 (2007)

  45. T. Johnson, R. Bozinoski, J. Ye, G. Sartor, J. Zheng, J. Yang, Int. J. Hydrogen Energy 40, 9803 (2015)

    Article  CAS  Google Scholar 

  46. M. Deymi-Dashtebayaz, M. Farzaneh-Gord, N. Nooralipoor, H. Niazmand, Braz. J. Chem. Eng. 33, 391 (2016)

    Article  CAS  Google Scholar 

  47. H. Luo, J. Xiao, P. Bénard, R. Chahine, T. Yang, Int. J. Hydrogen Energy 51, 664 (2024)

    Article  CAS  Google Scholar 

  48. K. Reddi, A. Elgowainy, E. Sutherland, Int. J. Hydrogen Energy 39, 19169 (2014)

    Article  CAS  Google Scholar 

  49. L. Viktorsson, J.T. Heinonen, J.B. Skulason, R. Unnthorsson, Energies 10, 763 (2017)

    Article  Google Scholar 

  50. E. Talpacci, M. Reuβ, T. Grube, P. Cilibrizzi, R. Gunnella, M. Robinius, D. Stolten, Int. J. Hydrogen Energy 43, 6256 (2018)

    Article  CAS  Google Scholar 

  51. Y. Yu, C. Lu, S. Ye, Z. Hua, C. Gu, Int. J. Hydrogen Energy 47, 13430 (2022)

    Article  CAS  Google Scholar 

  52. Z. Tian, H. Lv, W. Zhou, C. Zhang, P. He, Int. J. Hydrogen Energy 47, 3033 (2022)

    Article  CAS  Google Scholar 

  53. B.H. Park, C.K. Chae, Int. J. Hydrogen Energy 47, 4185 (2022)

    Article  CAS  Google Scholar 

  54. P.J. Linstrom, W.G. Mallard, J. Chem. Eng. Data 46, 1059 (2001)

    Article  CAS  Google Scholar 

  55. J.-Q. Li, Y. Chen, Y.B. Ma, J.-T. Kwon, H. Xu, J.-C. Li, Case Stud. Therm. Eng. 41, 102678 (2023)

    Article  Google Scholar 

  56. E. Rothuizen, M. Rokni, Int. J. Hydrogen Energy 39, 582 (2014)

    Article  CAS  Google Scholar 

  57. M. Monde, P. Woodfield, T. Takano, M. Kosaka, Int. J. Hydrogen Energy 37, 5723 (2012)

    Article  CAS  Google Scholar 

  58. N. De Miguel, B. Acosta, P. Moretto, R.O. Cebolla, Int. J. Hydrogen Energy 41, 19447 (2016)

    Article  Google Scholar 

  59. M. Farzaneh-Gord, M. Deymi-Dashtebayaz, H.R. Rahbari, H. Niazmand, Int. J. Hydrogen Energy 37, 3500 (2012)

    Article  CAS  Google Scholar 

  60. E. Rothuizen, B. Elmegaard, M. Rokni, Int. J. Hydrogen Energy 45, 9025 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (Project No. 20203010040010). It was also supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) and the Ministry of Land, Infrastructure and Transport (MOLIT) (Project No. 21OHTI-C163280-01).

Funding

This article is funded by Korea Institute of Energy Technology Evaluation and Planning, 20203010040010, Byung Heung Park, Korea Agency for Infrastructure Technology Advancement, 21OHTI-C163280-01, Byung Heung Park.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Heung Park.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B.H. Analysis of Gaseous Hydrogen Refueling Process to Develop Thermodynamic Model. Korean J. Chem. Eng. (2024). https://doi.org/10.1007/s11814-024-00165-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11814-024-00165-7

Keywords

Navigation