Skip to main content
Log in

Micro Flower-Like Hierarchical Mo2C/Co@NC (N-Doped Carbon) for Efficient Bifunctional Electrocatalyst

  • Original Article
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The development of low-cost and high-efficiency electrocatalysts for the water-splitting reaction to produce oxygen and hydrogen from alkaline electrolytes remains a major challenge, especially from the perspective of realizing fast and efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts, and it is important to improve the performance of these reactions through rational catalyst design. In this study, Co-based heterostructures composed of cobalt (Co) and molybdenum carbide (Mo2C) nanoparticles with micro-flower-like structures were intentionally designed as precursors for OER and HER electrocatalysts. In particular, during polymerization, nanoparticle (metal precursor) ions and dopamine aggregates combined to grow into nano-flakes and retained their structure after carbonization, forming micro-flower-like structures characterized by high specific surface area and porosity. The catalysts with hierarchical heterostructures constructed using this unique structure showed activities similar to those of the commercially available IrO2 and Pt/C catalysts, reaching current densities of 10 mA/cm2 for OER and HER in 0.1 M KOH and exhibiting good durability. Therefore, our results present new concepts for the structuring and fabricating catalysts to realize efficient OER and HER kinetics, and we expect that they will be utilized in the energy conversion field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. J. Song, C. Wei, Z.-F. Huang, C. Liu, L. Zeng, X. Wang, Z.J. Xu, Chem. Soc. Rev. 49, 2196–2214 (2020)

    Article  CAS  PubMed  Google Scholar 

  2. J.S. Kim, B. Kim, H. Kim, K. Kang, Adv. Energy Mater. 8, 1702774 (2018)

    Article  MathSciNet  Google Scholar 

  3. A. Kudo, Y. Miseki, Chem. Soc. Rev. 38, 253–278 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. W. Yang, R.R. Prabhakar, J. Tan, S.D. Tilley, J. Moon, Chem. Soc. Rev. 48, 4979–5015 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. B.M. Hunter, H.B. Gray, A.M. Muller, Chem. Rev. 116, 14120–14136 (2016)

    Article  CAS  PubMed  Google Scholar 

  6. L. Gao, X. Cui, C.D. Sewell, J. Li, Z. Lin, Chem. Soc. Rev. 50, 8428–8469 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. S. Li, Y. Gao, N. Li, L. Ge, X. Bu, P. Feng, Energy Environ. Sci. 14, 1897–1927 (2021)

    Article  CAS  Google Scholar 

  8. H.-F. Wang, L. Chen, H. Pang, S. Kaskel, Q. Xu, Chem. Soc. Rev. 49, 1414–1448 (2020)

    Article  CAS  PubMed  Google Scholar 

  9. A. Zhang, Y. Liang, H. Zhang, Z. Geng, J. Zeng, Chem. Soc. Rev. 50, 9817–9844 (2021)

    Article  CAS  PubMed  Google Scholar 

  10. M. Tahir, L. Pan, F. Idrees, X. Zhang, L. Wang, J.-J. Zou, Z.L. Wang, Nano Energy 37, 136–157 (2017)

    Article  CAS  Google Scholar 

  11. H. Xu, H. Shang, C. Wang, Y. Du, Coord. Chem. Rev. 418, 213374 (2020)

    Article  CAS  Google Scholar 

  12. Z. Kou, Y. Yu, X. Liu, X. Gao, L. Zheng, H. Zou, Y. Pang, Z. Wang, Z. Pan, J. He, ACS Catal. 10, 4411–4419 (2020)

    Article  CAS  Google Scholar 

  13. T. Ouyang, Y.Q. Ye, C.Y. Wu, K. Xiao, Z.Q. Liu, Angew. Chem. Int. Ed. 58, 4923–4928 (2019)

    Article  CAS  Google Scholar 

  14. M. Li, Y. Zhu, H. Wang, C. Wang, N. Pinna, X. Lu, Adv. Energy Mater. 9, 1803185 (2019)

    Article  Google Scholar 

  15. R.A. Mir, O.P. Pandey, Chem. Eng. J. 348, 1037–1048 (2018)

    Article  CAS  Google Scholar 

  16. J. Dong, Q. Wu, C. Huang, W. Yao, Q. Xu, J. Mater. Chem. A 6, 10028–10035 (2018)

    Article  CAS  Google Scholar 

  17. H. Yu, S. Xie, J. Yang, J. Lv, W. Tan, J. Yin, J. Wang, M. Zhao, C. Wang, M. Zhang, Colloids Surf A Physicochem Eng Asp 645, 128953 (2022)

    Article  CAS  Google Scholar 

  18. Z.-Y. Yu, Y. Duan, M.-R. Gao, C.-C. Lang, Y.-R. Zheng, S.-H. Yu, Chem. Sci. 8, 968–973 (2017)

    Article  CAS  PubMed  Google Scholar 

  19. L. Xia, X. Zhang, H. Song, Y. Zheng, X. Li, B. Gao, K. Huo, P.K. Chu, Int. J. Hydrogen Energy 45, 22629–22637 (2020)

    Article  CAS  Google Scholar 

  20. Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He, S. Mu, Nano Energy 57, 746–752 (2019)

    Article  CAS  Google Scholar 

  21. S. Cui, M. Li, X. Bo, Int. J. Hydrogen Energy 45, 21221–21231 (2020)

    Article  CAS  Google Scholar 

  22. K. An, X. Xu, Electrochim. Acta 293, 348–355 (2019)

    Article  CAS  ADS  Google Scholar 

  23. D. Reynard, B. Nagar, H. Girault, ACS Catal. 11, 5865–5872 (2021)

    Article  CAS  Google Scholar 

  24. C. Lu, D. Tranca, J. Zhang, F.N. Rodríguez Hernández, Y. Su, X. Zhuang, F. Zhang, G. Seifert, X. Feng, ACS Nano 11, 3933–3942 (2017)

    Article  CAS  PubMed  Google Scholar 

  25. H. Ren, Y. Zhang, L. Liu, Y. Li, D. Wang, R. Zhang, W. Zhang, Y. Li, B.-C. Ye, Microchim. Acta 186, 1–9 (2019)

    Article  Google Scholar 

  26. H. Wei, J. Wang, Q. Lin, Y. Zou, X.A. Chen, H. Zhao, J. Li, H. Jin, Y. Lei, S. Wang, Nano Energy 86, 106047 (2021)

    Article  CAS  Google Scholar 

  27. D.K. Sam, S. Gong, A. Durairaj, E.K. Sam, J. Liu, X. Lv, Int. J. Energy Res. 45, 10989–11001 (2021)

    Article  CAS  Google Scholar 

  28. W. Yaseen, M. Xie, B.A. Yusuf, Y. Xu, N. Ullah, M. Rafiq, A. Ali, J. Xie, Appl. Surf. Sci. 579, 152148 (2022)

    Article  CAS  Google Scholar 

  29. Y. Liu, X. Zhu, Q. Zhang, T. Tang, Y. Zhang, L. Gu, Y. Li, J. Bao, Z. Dai, J.-S. Hu, J. Mater. Chem. A 8, 8920–8926 (2020)

    Article  CAS  Google Scholar 

  30. H.Q. Chang, G.H. Zhang, K.-C. Chou, Electrochim. Acta 394, 139119 (2021)

    Article  CAS  Google Scholar 

  31. Y. Wang, K. Li, F. Yan, C. Li, C. Zhu, X. Zhang, Y. Chen, Nanoscale 11, 12563–12572 (2019)

    Article  CAS  PubMed  Google Scholar 

  32. S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li, Chem. Eng. J. 430, 132697 (2022)

    Article  CAS  Google Scholar 

  33. P. Zhang, Y. Liu, T. Liang, E.H. Ang, X. Zhang, F. Ma, Z. Dai, Appl. Catal. B 284, 119738 (2021)

    Article  CAS  Google Scholar 

  34. J. Zhang, X.P. Sun, P. Wei, G. Lu, S.X. Sun, Y. Xu, C. Fang, Q. Li, J.T. Han, ChemCatChem 12, 3737–3745 (2020)

    Article  CAS  Google Scholar 

  35. X. Luo, Q. Zhou, S. Du, J. Li, J. Zhong, X. Deng, Y. Liu, A.C.S. Appl, Mater. Interfaces 10, 22291–22302 (2018)

    Article  CAS  Google Scholar 

  36. M.H. Gomaa, Z.A. Hamid, M.A.M. Ibrahim, R.A. El Sttar, E.-S.H. El-Mosallamy, Korean J. Chem. Eng. 40, 1186–1196 (2023)

    Article  CAS  Google Scholar 

  37. Y. Shi, J. Cai, X. Zhang, Z. Li, S. Lin, Int. J. Energy Res. 47, 7761–7769 (2022)

    CAS  Google Scholar 

  38. X. Hou, H. Zhou, M. Zhao, Y. Cai, Q. Wei, ACS Sustain. Chem. Eng. 8, 5724–5733 (2020)

    Article  CAS  Google Scholar 

  39. S. Ghosh, S.M. Jeong, S.R. Polaki, Korean J. Chem. Eng. 35, 1389–1408 (2018)

    Article  CAS  Google Scholar 

  40. J.B. Hwang, S. Kim, W.-S. Chae, H.M. Pathan, M.A. Mahadik, J.S. Jang, Korean J. Chem. Eng. 38, 1149–1160 (2021)

    Article  CAS  Google Scholar 

  41. H.S. Kim, M.S. Kang, W.C. Yoo, J. Phys. Chem. C 119, 28512–28522 (2015)

    Article  CAS  Google Scholar 

  42. J. Lee, H.S. Kim, J.-H. Jang, E.-H. Lee, H.-W. Jeong, K.-S. Lee, P. Kim, S.J. Yoo, ACS Sustain. Chem. Eng. 9, 7863–7872 (2021)

    Article  CAS  Google Scholar 

  43. H.S. Kim, M. Kim, M.S. Kang, J. Ahn, Y.-E. Sung, W.C. Yoo, ACS Sustain. Chem. Eng. 6, 2324–2333 (2018)

    Article  CAS  Google Scholar 

  44. K.-H. Kim, Y.-J. Song, H.-J. Ahn, Korean J. Chem. Eng. 40, 1071–1076 (2023)

    Article  CAS  Google Scholar 

  45. Y. Sohn, D.-G. Kim, J.H. Lee, S. Lee, I.S. Hwang, S.-H. Lee, S.J. Yoo, P. Kim, Korean J. Chem. Eng. 37, 938–945 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Creative Materials Discovery Program through the Ministry of Trade, Industry & Energy of Korea (MOTIE-20018989 and 20223030040220) and the Korea Institute of Science and Technology (2E32591). Also, this work was supported by the Korea Institute of Industrial Technology (EH230016)". Moreover, we thank Dr. Hyun S Park for the supervision of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hee Soo Kim or Dong-Ha Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1593 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.S., Lim, A., Woo, M. et al. Micro Flower-Like Hierarchical Mo2C/Co@NC (N-Doped Carbon) for Efficient Bifunctional Electrocatalyst. Korean J. Chem. Eng. 41, 187–194 (2024). https://doi.org/10.1007/s11814-024-00102-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-024-00102-8

Keywords

Navigation