Skip to main content
Log in

Techno-economic analysis of green and blue hybrid processes for ammonia production

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

In a blue ammonia plant, hydrogen required for ammonia synthesis is traditionally produced through steam reforming. This process is cost competitive but has the drawbacks of high CO2 emissions and excessive energy consumption. On the other hand, in a green ammonia plant, hydrogen production through water electrolysis avoids CO2 emissions and utilizes renewable energy sources. However, high stack costs and electricity prices degrades the economic viability of the process. Recognizing the potential benefits of both green and blue ammonia production methods, novel hybrid processes have been proposed to integrate these approaches. A thermoneutral tri-reformer has been introduced as a replacement for the energy-intensive steam reforming process, offering a means to eliminate CO2 emissions. In the green ammonia process, hydrogen generated by a water electrolyzer, along with nitrogen obtained from an air separation unit (ASU), are employed for ammonia synthesis. However, the high-purity oxygen produced as a byproduct from the electrolyzer and ASU has not been utilized thus far. This oxygen can be fed into the tri-reformer to produce blue hydrogen or syngas. To evaluate the technical and economic advantages resulting from the integration of these systems, a techno-economic assessment was conducted on these hybrid processes as well as conventional ones in the literature [3]. The results demonstrate that the proposed processes exhibit superior economic performance compared to conventional approaches, highlighting the potential benefits of system integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Soloveichik, AIChE annual meeting, Minneapolis, October 29–November 3 (2017).

  2. R. Lan, J. Irvine and S. Tao, Int. J. Hydrogen Energy, 37, 1482 (2012).

    Article  CAS  Google Scholar 

  3. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Appl. Energy, 259, 114135 (2020).

    Article  CAS  Google Scholar 

  4. P. H. Pfromm, J. Renew. Sustain. Energy, 9, 034702 (2017).

    Article  Google Scholar 

  5. J. Andersson and J. Lundgren, Appl. Energy, 130, 484 (2014).

    Article  CAS  Google Scholar 

  6. The Royal Society, Ammonia: zero-carbon fertiliser, fuel and energy store (2020).

  7. D. Flórez-Orrego, F. Maréchal, S. Silvio de Oliveira Jr., Energy Convers. Manage., 194, 22 (2019).

    Article  Google Scholar 

  8. L. Wang, M. Pérez-Fortes, H. Madi, S. Diethelm, J. V. Herleb and F. Maréchal, Appl. Energy, 211, 1060 (2018).

    Article  CAS  Google Scholar 

  9. H. Zhang, L. Wang, J. V. Herleb, F. Maréchalc and U. Desideri, Energy, 12, 3742 (2019).

    CAS  Google Scholar 

  10. L. A. Wickramasinghe, T. Ogawa, R. R. Schrock and P. Müller, J. Am. Chem. Soc., 139, 9132 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson and S. Few, Int. J. Hydrogen Energy, 42, 30470 (2017).

    Article  CAS  Google Scholar 

  12. C. D. Demirhan, W. W. Tso, J. B. Powell and E. N. Pistikopoulos, AIChE J., 65, 7 (2019).

    Article  Google Scholar 

  13. J. Jang and M. Han, Int. J. Hydrogen Energy, 47, 9139 (2022).

    Article  CAS  Google Scholar 

  14. A. T. Damanabi and F. Bahadori, J CO2 Util., 21, 227 (2017).

    Article  Google Scholar 

  15. A. Dwivedi, R. Gudi and P. Biswas, J. CO2 Util., 24, 376 (2018).

    Article  CAS  Google Scholar 

  16. M. Sadeghi, M. Jafari, M. Yari and S. M. S. Mahmoudi, J. CO2 Util., 25, 283 (2018).

    Article  CAS  Google Scholar 

  17. C. Song and W. Pan, Catal. Today, 98, 463 (2004).

    Article  CAS  Google Scholar 

  18. D. Flórez-Orrego and Jr. S. Oliveira, Energy, 141, 2540 (2017).

    Article  Google Scholar 

  19. R. Turton, R. C. Bailie, W. B. Whiting and J. A. Shaeiwitz, Analysis, synthesis and design of chemical processes, Pearson Education (2008).

  20. J. Xu and G. F. Froment, AIChE J., 35, 88 (1989).

    Article  CAS  Google Scholar 

  21. T. Numaguchi and K. Kikuchi, Chem. Eng. Sci., 43, 2295 (1988).

    Article  CAS  Google Scholar 

  22. D. L. Trimm and C. W. Lam, Chem. Eng. Sci., 35, 1405 (1980).

    Article  CAS  Google Scholar 

  23. H. F. Rase Case studies and design data, New York, John Wiley and Sons (1977).

    Google Scholar 

  24. J. Morud and S. Skogestad, AIChE J., 44, 888 (1998).

    Article  CAS  Google Scholar 

  25. A. Dutta and S. D. Phillips, Technical Report NREL (2009).

  26. C. N. Hamelink, A. P. Faaij, H. D. Uil and H. Boerrigter, Energy, 29, 1743 (2004).

    Article  Google Scholar 

  27. Energy DG. Quarterly report on European electricity markets (2017).

  28. Committee on Climate Change, Hydrogen in a low-carbon economy (2019).

  29. Annual report 2017 of Gestore mercati energetici (2017).

  30. S. Gary, P. Nick and S. Krista, Farmdoc Daily, 11, 114 (2021).

    Google Scholar 

  31. C. Xi, L. Gongping and J. Wanqin, Green Energy Environ., 6, 176 (2021).

    Article  Google Scholar 

  32. M. Bozorg, A. Bernardetta, V. Piccialli, S. Álvaro and C. Castel, Chem. Eng. Sci., 207, 1196 (2019).

    Article  CAS  Google Scholar 

  33. J. Guilera, J. R. Morante and T. Andreu, Convers. Manage., 162, 218 (2018).

    Article  CAS  Google Scholar 

  34. H. Naims, Environ. Sci. Pollut. Res., 23, 2226 (2016).

    Article  Google Scholar 

  35. E. Oko, B. Zacchello, M. Wang and A. Fethi, Greenhouse Gases Sci. Technol., 8(4), 686 (2018).

    Article  CAS  Google Scholar 

  36. R. Stephanie, S. Sumesh, P. Tom, W. Liang, Ø. Torbjørn and T. N. Alex, Biotechnol. Biofuels, 10, 150 (2017).

    Article  Google Scholar 

  37. https://www.alibaba.com.

  38. R. M. Swanson, A. Platon, J. A. Satrio and R. C. Brown, Fuel, 89, 11 (2010).

    Article  Google Scholar 

  39. M. Akbari, A. O. Oyedun and A. Kumar, Energy, 151, 133 (2018).

    Article  CAS  Google Scholar 

  40. R. Bañares-Alcántara, G. D. Iii, M. Fiaschetti, P. Grünewald, J. M. Lopez and E. Tsang, Analysis of islanded ammonia-based energy storage systems, University of Oxford (2015).

  41. E. C. D. Tan, M. Talmadge, D. Abhijit, J. Hensley, J. Schaidle and M. Biddy, Technical Rep.: NREL/TP-5100-62402 (2015).

  42. F. Maréchal and B. Kalitventzeff, Chem. Eng., 22, 149 (1998).

    Google Scholar 

  43. F. Maréchal and B. Kalitventzeff, Chem. Eng., 23, 133 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungwan Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S., Shin, Y., Jeong, E. et al. Techno-economic analysis of green and blue hybrid processes for ammonia production. Korean J. Chem. Eng. 40, 2657–2670 (2023). https://doi.org/10.1007/s11814-023-1520-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-023-1520-1

Keywords

Navigation