Skip to main content

Advertisement

Log in

Development of 3D CFD model of compact steam methane reforming process for standalone applications

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The demand for sustainable energy has increased with growing concerns of environmental damage. H2 has attracted considerable attention as a clean and renewable energy carrier that can be used in fuel cells. Industrial H2 has been manufactured to produce synthetic gas in large-capacity plants using steam methane reforming (SMR). However, a compact H2 production system is needed that maintains production efficiency on a small scale for fuel cell applications. In this study, a three-dimensional computational fluid dynamics model of a compact steam reforming reactor was developed based on the experimental data measured in a pilot-scale charging station. Using the developed model, one can predict all the compositions of the reformate produced in the reactor and simultaneously analyze the temperatures of the product, flue gas, and the reaction tube. Therewith, case studies were conducted to compare the H2 production performance of the eight different structures and sizes of the proposed reformer. Based on the results, a design improvement strategy is proposed for an efficient small-scale SMR process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a:

radiation absorption coefficient [1/m]

Ai :

pre-exponential factor of rate coefficient ki

Cp :

heat capacity at constant pressure [J/kg·K]

D p :

diameter of catalyst particle [m]

Dm :

mass diffusion coefficient [m2/s]

DT :

thermal diffusion coefficient [m2/s]

Ei :

activation energy [kJ/mol]

g:

gravitational acceleration [m/s2]

gi :

gravitational vector in the ith direction

h:

enthalpy [J/kg]

h0 :

enthalpy of formation [J/kg]

I:

radiation intensity [W/m2·sr]

J:

diffusion flux [kg/m2·s]

k:

turbulent kinetic energy [m2/s2]

k1, k3 :

rate coefficient [kmol bar1/2/kg·h]

k2 :

rate coefficient [kmol/kg·h·bar]

\({{\rm{K}}_{C{H_4}}},{{\rm{K}}_{CO}},{{\rm{K}}_{{H_2}}}\) :

adsorption constant [bar−1]

\({{\rm{K}}_{{H_2}O}}\) :

dissociative adsorption constant

M:

molecular weight [kg/kmol]

n:

refractive index

Pj :

partial pressure of component j [bar]

Prt :

turbulent Prandtl number

R:

gas constant [kJ/kmol-K]

Rj :

volumetric rate of creation of species j

r:

refractive index of the medium

r1, r2, r3 :

rate of reaction rate [kmol/kg·h]

Sct :

turbulent Schmidt number

S ij :

mean rate of the strain tensor [1/s]

T:

temperature [K]

u:

velocity [m/s]

v:

velocity [m/s]

Vs :

superficial velocity [m/s]

x:

length [m]

Y:

mass fraction of component

α :

permeability [m2]

β :

coefficient of thermal expansion [1/K]

ε :

turbulent dissipation rate [m2/s3]

γ :

porosity

μ :

dynamic viscosity [Pa·s]

μt :

turbulent viscosity [kg/m·s]

Ω′ :

solid angle [rad]

ρ :

mass density of a gas mixture [g/cm3]

σ :

Stefan-Boltzmann constant [5.672×10−8 W/m2·K4]

σ k, σ ε :

turbulent Prandtl number

σ s :

scattering coefficient [1/m]

\({\bar \tau }\) :

stress tensor [Pa]

τ :

shear stress [Pa]

References

  1. E. E. R. ENERGY (Hydrogen Production: Natural Gas Reforming).

  2. A. Demirbas, Energy Sources B: Econ. Plan. Policy, 12, 172 (2017).

    Article  CAS  Google Scholar 

  3. R. B. Gupta, Hydrogen fuel — production, transport and storage, CRC Press (2009).

  4. P. Nikolaidis and A. Poullikkas, Renew. Sust. Energ. Rev., 67, 597 (2017).

    Article  CAS  Google Scholar 

  5. A. P. Simpson and A. E. Lutz, Int. J. Hydrogen Energy, 32, 4811 (2007).

    Article  CAS  Google Scholar 

  6. N. Hajjaji, M.-N. Pons, A. Houas and V. Renaudin, Energy Policy, 42, 392 (2012).

    Article  CAS  Google Scholar 

  7. P. Li, L. Chen, S. Xia and L. Zhang, Int. J. Chem. React., 17, 20180191 (2019).

    Google Scholar 

  8. M. Taji, M. Farsi and P. Keshavarz, Int. J. Hydrogen Energy, 43, 13110 (2018).

    Article  CAS  Google Scholar 

  9. M. S. Nobandegani, M. R. S. Birjandi, T. Darbandi, M. M. Khalilipour, F. Shahraki and D. Mohebbi-Kalhori, J. Nat. Gas Sci. Eng., 36, 540 (2016).

    Article  Google Scholar 

  10. C. M. Kallegoda, CH 4034 Comprehensive Design Project II Interim Report 1 Primary Reformer Design Production of Ammonia from Naphtha, D. P. G. Rathnasiri (2017).

  11. A. Tran, A. Aguirre, M. Crose, H. Durand and P. D. Christofides, Comput. Chem. Eng, 104, 185 (2017).

    Article  CAS  Google Scholar 

  12. A. Kumar, T. F. Edgar and M. Baldea, Comput. Chem. Eng., 107, 271 (2017).

    Article  CAS  Google Scholar 

  13. A. Kumar, M. Baldea and T. F. Edgar, Comput. Chem. Eng., 105, 224 (2017).

    Article  CAS  Google Scholar 

  14. A. Kumar, M. Baldea and T. F. Edgar, Control Eng. Pract., 54, 140 (2016).

    Article  Google Scholar 

  15. P. Chen, W. Du, M. Zhang, F. Duan and L. Zhang, Int. J. Hydrogen Energy, 44, 15704 (2019).

    Article  CAS  Google Scholar 

  16. M.M. Aslam Bhutta, N. Hayat, M.H. Bashir, A.R. Khan, K.N. Ahmad and S. Khan, Appl. Therm. Eng., 32, 1 (2012).

    Article  Google Scholar 

  17. M. J. H. Khan, M. A. Hussain, Z. Mansourpour, N. Mostoufi, N. M. Ghasem and E. C. Abdullah, J. Ind. Eng. Chem., 20, 3919 (2014).

    Article  CAS  Google Scholar 

  18. K. Uebel, P. Rößger, U. Prüfert, A. Richter and B. Meyer, Fuel Process. Technol., 149, 290 (2016).

    Article  CAS  Google Scholar 

  19. Z. Bao, F. Yang, Z. Wu, S. Nyallang Nyamsi and Z. Zhang, Energy Convers. Manag., 65, 322 (2013).

    Article  CAS  Google Scholar 

  20. J. Ding, X. Wang, X. F. Zhou, N. Q. Ren and W. Q. Guo, Bioresour. Technol., 101, 7016 (2010).

    PubMed  Google Scholar 

  21. J. L. Ansoni and P. Seleghim, Adv. Eng. Sofiw., 91, 23 (2016).

    Article  Google Scholar 

  22. S. Park, J. Na, M. Kim and J. M. Lee, Comput. Chem. Eng, 119, 25 (2018).

    Article  CAS  Google Scholar 

  23. G. Shin, J. Yun and S. Yu, Int. J. Hydrogen Energy, 42, 14697 (2017).

    Article  CAS  Google Scholar 

  24. S. K. Hong, S. K. Dong, J. O. Han, J. S. Lee and Y. C. Lee, Energy, 61, 410 (2013).

    Article  CAS  Google Scholar 

  25. D. D. Nguyen, S. I. Ngo, Y. I. Lim, W. Kim, U. D. Lee, D. Seo and W. L. Yoon, Int. J. Hydrogen Energy, 44, 1973 (2019).

    Article  CAS  Google Scholar 

  26. S. I. Ngo, Y.-I. Lim, W. Kim, D. J. Seo and W. L. Yoon, Appl. Energy, 236, 340 (2019).

    Article  CAS  Google Scholar 

  27. J. Xu and G. F. Froment, AICHE Symp. Ser., 35, 88 (1989).

    Article  CAS  Google Scholar 

  28. J. Han, A Development of Engine and Fuelling Station for HCNG fueled City Bus (2016).

  29. Z. Yu, E. Cao, Y. Wang, Z. Zhou and Z. Dai, Fuel Process. Technol., 87, 695 (2006).

    Article  CAS  Google Scholar 

  30. P. C. J. Hoi, Validation of discrete ordinate radiation model for application in UV air disinfection modeling (2014).

  31. A. Tran, A. Aguirre, H. Durand, M. Crose and P. D. Christofides, Chem. Eng. Sci., 171, 576 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinje Lee or Jong Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, JR., Lee, S. & Lee, J.M. Development of 3D CFD model of compact steam methane reforming process for standalone applications. Korean J. Chem. Eng. 39, 1182–1193 (2022). https://doi.org/10.1007/s11814-021-1029-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1029-4

Keywords

Navigation