Skip to main content
Log in

3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Steam Reforming of Methane, which converts natural gas into products with higher economic value in the presence of a suitable catalyst bed reformer, is the most economical method for hydrogen production in petroleum refineries. This study focuses on developing a Computational Fluid Dynamics (CFD) model of a steam methane reformer. To this purpose, a steady-state heterogeneous 3 Dimensional model that was composed of mass, species, momentum, and energy balances was developed. It compares two different geometrical porous bed reformers with different heating tube configurations for better heat transfer and reforming. Effects of heating tubes inlet temperature, the ratio of inlet CH4/H2O, and the configuration of the heating tube are studied and optimized. The results show that conversion of methane will be promoted by increasing inlet temperature of the heating tube as well as the number of heating tubes in the reformer when CH4/H2O ratio is about 0.2. In this platform, the conversion of methane is not affected by the porosity below 0.35. Also, the simulations results are shown to be in agreement with typical data reported in the literature. So, this study can be used to develop industrial natural gas reformers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. P. Inbamrung, T. Sornchamni, C. Prapainainar, et al., Energy 152, 383 (2018).

    Article  CAS  Google Scholar 

  2. D. Pashchenko, Energy 143, 478 (2018).

    Article  CAS  Google Scholar 

  3. L. Li, D. Tang, Y. Song, et al., Energy 149, 937 (2018).

    Article  CAS  Google Scholar 

  4. M. Taji, M. Farsi, and P. Keshavarz, Int. J. Hydrogen Energy 43, 13 110 (2018).

    Article  Google Scholar 

  5. I. Dincer and A. S. Joshi, Solar Based Hydrogen Production Systems (Springer, New York, 2013), pp. 7−20.

    Book  Google Scholar 

  6. A. T-Raissi and D. L. Block, IEEE Power Energy Mag., 2 (6), 40 (2004). https://doi.org/10.1109/MPAE.2004.1359020

    Article  Google Scholar 

  7. M. A. Nieva, M. M. Villaverde, A. Monzón, et al., Chem. Eng. J. 235, 158 (2014).

    Article  CAS  Google Scholar 

  8. G. Kolb, Chem. Eng. Process. 65, 1 (2013).

    Article  CAS  Google Scholar 

  9. H. Butcher, C. J. E. Quenzel, L. Breziner, et al., Int. J. Hydrogen Energy 39, 18 046 (2014).

    Article  Google Scholar 

  10. A. M. Amin, E. Croiset, and W. Epling, Int. J. Hydrogen Energy 36, 2904 (2011).

    Article  CAS  Google Scholar 

  11. J. M. Ogden, Review of Small Stationary Reformers for Hydrogen Production, Report for the International Energy Agency Agreement on the Production and Utilization of Hydrogen No. IEA/H2/TR-02/002 (2001).

  12. P. Ferreira Aparicio, M. J. Benito, and J. L. Sanz, Catal. Rev. Sci. Eng. 47, 491 (2005).

    Article  CAS  Google Scholar 

  13. X. Zhai, Y. Cheng, Z. Zhang, and Y. Jin, Y. Cheng, Int. J. Hydrogen Energy 36, 7105 (2011).

    Article  CAS  Google Scholar 

  14. F. Watanabe, I. Kaburaki, N. Shimoda, and S. Satokawa, Fuel Process. Technol. 152, 15 (2016).

    Article  CAS  Google Scholar 

  15. C. Herce, C. Cortes, and S. Stendardo, Fuel Process. Technol. 167, 747 (2017).

    Article  CAS  Google Scholar 

  16. H. Wang, D. W. Blaylock, A. H. Dam, et al., Catal. Sci. Technol. 7, 1713 (2017).

    Article  CAS  Google Scholar 

  17. Y. Yoon, H. Kim, and J. Lee, J. Power Sources, 359, 450 (2017).

    Article  CAS  Google Scholar 

  18. J. Chen, L. Yan, W. Song, and D. Xu, Int. J. Hydrogen Energy 42, 664 (2017).

    Article  CAS  Google Scholar 

  19. D. Pashchenko, Int. J. Hydrogen Energy 43, 8662 (2018).

    Article  CAS  Google Scholar 

  20. P. Gateau, in Proceedings of the COMSOL User’s Conference, Grenoble (2007).

  21. J. Chen, X. Gao, L. Yan, and D. Xu, Int. J. Hydrogen Energy 43, 12 948 (2018).

    Article  Google Scholar 

  22. B. A. Haberman and J. B. Young, Int. J. Heat Mass Transfer 47, 3617 (2004).

    Article  CAS  Google Scholar 

  23. T. Jiwanuruk, S. Putivisutisak, P. Ponpesh, et al., Chem. Eng. J. 293, 319 (2016).

    Article  CAS  Google Scholar 

  24. J. Xu and G. F. Froment, AIChE J. 35, 88 (1989).

    Article  CAS  Google Scholar 

  25. M. Nerat and D. Jurici, Int. J. Hydrogen Energy 41, 3613 (2016).

    Article  CAS  Google Scholar 

  26. V. Palma, M. Miccio, A. Ricca, et al., Fuel 138, 80 (2014).

    Article  CAS  Google Scholar 

  27. B. A. Wilhite, L. Breziner, J. Mettes, and P. Bossard, Energy Fuels 27, 4403 (2013).

    Article  CAS  Google Scholar 

  28. D. A. Nield and A. Bejan, Convection in Porous Media, 3rd Ed. (Springer, New York, 2006).

    Google Scholar 

  29. P. Sadooghi and R. Rauch, J. Nat. Gas Sci. Eng. 11, 46 (2013).

    Article  CAS  Google Scholar 

  30. M. Mundhwa and C. P. Thurgood, Fuel Process. Technol. 158, 57 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. B. Haghi, G. Salehi, M. T. Azad or A. L. Nichkoohi.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ADDITIONAL INFORMATION

Seyed Behzad Haghi; ORCID: 0000-0002-9799-4683 Gholamreza Salehi; ORCID: 0000-0002-7866-358X Masoud Torabi Azad; ORCID: 0000-0001-9571-8813 Ali Lohrasbi Nichkoohi ORCID: 0000-0001-7556-1046

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghi, S.B., Salehi, G., Azad, M.T. et al. 3D CFD Modeling and Optimization of a Cylindrical Porous Bed Reactor for Hydrogen Production using Steam Reforming of Methane. Pet. Chem. 60, 1251–1259 (2020). https://doi.org/10.1134/S0965544120110109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120110109

Keywords:

Navigation