Skip to main content
Log in

Structural and thermal properties of the Fe-based alloys prepared by mechanical milling

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nanocrystalline FeCoNi and FeCoNiSi powdered alloys were prepared by mechanical milling process (MA). Using X-ray diffraction patterns, we experimentally proved that when MA reached a time of 50 h, it led to a decrease of the crystallite size down to 20 nm and 32 nm for FeCoNiSi and FeCoNi, respectively. However, the dislocation density increased, reaching the highest value for the alloy associated with silicon. Nevertheless, this high energy ball-milling process is not used only for the refining of microstructure, but also to induce either a chemical reaction between the powdered chemical elements or a phase transformation, such as the allotropic transformation of HCP-Co to FCC-Co and the formation of highly disordered Fe-based solid solutions. Thermal stability of the milled mixtures was investigated by DSC from 25 up to 700 °C at a heating rate of 10 °C/min. Various milled samples were first annealed at specific temperatures and then analyzed using X-ray diffraction, which demonstrated the stability of the evolved phases during subsequent heating and the formation of some metallic oxides, such as Fe3O4 Fe2O3 and FeO, particularly for the elevated annealing temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Prasad and V. Kumar, J. Mater. Sci. Mater. Elect., 26, 10109 (2015).

    Article  CAS  Google Scholar 

  2. H. Raanaei, H. Eskandari and H. V. Mohammad, J. Magn. Magn. Mater., 398, 190 (2016).

    Article  CAS  Google Scholar 

  3. A. Zeleńáková, D. Olekšáková, J. Degmová, J. Kováč, P. Kollár, M. Kusý and P. Sovák, J. Magn. Magn. Mater., 316, e519 (2007).

    Article  Google Scholar 

  4. C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001).

    Article  CAS  Google Scholar 

  5. E. Jartych, J. Magn. Magn. Mater., 323, 209 (2011).

    Article  CAS  Google Scholar 

  6. T. Pikula, D. Oleszak, M. Pękała and E. Jartych, J. Magn. Magn. Mater., 320, 413 (2008).

    Article  CAS  Google Scholar 

  7. G. M. Mocolvin and M. J. Shaw, Mater. Sci. Forum, 88, 235 (1992).

    Article  Google Scholar 

  8. G. B. Schaffer and P. G. McCormick, Appl. Phys. Lett., 1, 45 (1988).

    Google Scholar 

  9. B. Avar and S. Ozcan, J. Alloys Compd., 650, 53 (2015).

    Article  CAS  Google Scholar 

  10. C. Suryanarayana, Int. Mater. Rev., 40, 41 (1995).

    Article  CAS  Google Scholar 

  11. C. Suryanarayana, Prog. Mater. Sci., 46, 1 (2001).

    Article  CAS  Google Scholar 

  12. M. R. Kasaai, J. Nanotechnol., 4, 1 (2015).

    Article  Google Scholar 

  13. C. A. Poland, P. B. Larsen, S. A. K. Read, J. Varet, S. M. Hankin and H. R. Lam, D.E.P.A: Copenhagen, Denmark, 23 (2016).

  14. A. C. Santos, F. Morais, A. Simóes, I. Pereira, J. A. D. Sequeira, M. Pereira-Silva, F. Veiga and A. Ribeiro, Expert Opin. Drug Deliv., 16, 313 (2019).

    Article  CAS  Google Scholar 

  15. D. Jiles, Introduction to magnetism and magnetic materials, Chapman and Hall/CRC Press: New York, NY, USA (1998).

    Google Scholar 

  16. H. Raanaei, H. Eskandari and V. Mohammad-Hosseini, J. Magn. Magn. Mater., 398, 190 (2016).

    Article  CAS  Google Scholar 

  17. X. Li and S. Takahashi, J. Magn. Magn. Mater., 214, 195 (2000).

    Article  CAS  Google Scholar 

  18. Q. I. Tianlong, L. I. Yanhui, A. Takeuchi, X. Guoqiang, H. Miao and W. Zhang, Intermetallics, 66, 8 (2015).

    Article  Google Scholar 

  19. Y. Li, W. Zhang and T. Qi, J. Alloys Compd., 693, 25 (2017).

    Article  CAS  Google Scholar 

  20. R. Wei, H. Sun, C. Chen, Z. Han and F. Li, J. Magn. Magn. Mater., 435, 184 (2017).

    Article  CAS  Google Scholar 

  21. V. Petrisek and D. M. Jana, The Crystallographic Computing System (Institute of Physics), Prague (2000).

  22. E. A. Owen and D. Madoc Jones, University College of North Wales, Bangor MS (1954).

  23. P. Novák, M. Zelinková, J. Šerák, A. Michalcová, M. Novák and D. Vojtĕch, Intermetallics, 19, 1306 (2011).

    Article  Google Scholar 

  24. G. K Williamson and W. H. Hall, Acta Metall., 1, 22 (1953).

    Article  CAS  Google Scholar 

  25. Y. Zhao, H. Sheng and K. Lu, Acta Mater., 49, 365 (2001).

    Article  CAS  Google Scholar 

  26. L. D. Rafailović and D. M. Minić, Chem. Ind., 63, 557 (2009).

    Google Scholar 

  27. B. N. Mondal, A. Basumallick, D. N. Nath and P. P. Chattopadhyay, Mater. Chem. Phys., 116, 358 (2009).

    Article  CAS  Google Scholar 

  28. D. Bruce and P. Hancock, Br. Corros. J., 4, 221 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakia Daly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daly, R., Sunol, J.J. & Khitouni, M. Structural and thermal properties of the Fe-based alloys prepared by mechanical milling. Korean J. Chem. Eng. 39, 1614–1623 (2022). https://doi.org/10.1007/s11814-021-1025-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-1025-8

Keywords

Navigation