Skip to main content
Log in

A Taguchi approach with electron-beam irradiation to optimize the efficiency of removing enrofloxacin from aqueous media

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Electron-beam (EB) irradiation was employed to degrade enrofloxacin (ENR) in an aqueous solution. The algal growth inhibition test revealed that ENR exhibited low toxicity against the cyanobacterium Arthrospira sp., with an EC50-96 h value of 5.17 mg/L. The Taguchi design also involved finding the best optimum for ENR treatment using EB. Results revealed that the high-efficiency removal of ENR in an aqueous solution was approximately 98.53% under the optimum conditions of an absorbed dose of 5 kGy, a pH of 5.0, and an initial ENR concentration of 10 mg/L and an H2O2 concentration of 2mM. The ERR degradation under a couple of EB irradiation and H2O2 followed pseudo-first-order kinetics, with an R2 of ∼0.970. The major degradation pathways of ENR were suggested by density functional theory, natural bond orbital calculations, and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. Life cycle assessment (LCA) was also performed to evaluate the impact of the EB on removing ENR; the industrial process was designed based on laboratory tests aimed with the ReCiPe tool. The obtained results indicated that energy consumption and H2O2 affect environmental impacts with order human health, ecology systems, and natural resource. The LCA also proved that EB could be a green and efficient method for eliminating pharmaceutical contaminants in water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO, Pharmaceuticals in drinking water public health and environment, water, sanitation, hygiene and health, WHO, Geneva, Switzerland (2011).

    Google Scholar 

  2. V. J. Sharavanan, M. Sivaramakrishnan, N. Sivarajasekar, N. Senthilrani, R. Kothandan, N. Dhakal, S. Sivamani, P. L. Show, M. R. Awual and M. Naushad, Environ. Chem. Lett., 18, 325 (2020).

    Article  CAS  Google Scholar 

  3. E. Mohmmed, A. M. Abdelkarim, M. A. Oshi and M. Naeem, Life Sci., 2, 4 (2021).

    Article  Google Scholar 

  4. I. Ebert, J. Bachmann, U. Kühnen, A. Küster, C. Kussatz, D. Maletzki and C. Schlüter, Environ. Toxicol. Chem., 30, 2786 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. R. Nelson, Lancet Infect. Dis., 4, 258 (2004).

    Article  Google Scholar 

  6. C. Nguyen Dang Giang, Z. Sebesvari, F. Renaud, I. Rosendahl, Q. Hoang Minh and W. Amelung, PloS One, 10, 0131855 (2015).

    Article  Google Scholar 

  7. R. Wei, F. Ge, M. Chen and R. Wang, J. Environ. Qual., 41, 1481 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. M. Andrieu, A. Rico, T. M. Phu, N. T. Phuong and P. J. Van Den Brink, Chemosphere, 119, 407 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. G. Li, H. Yang, T. An and Y. Lu, Ecotoxicol. Environ. Saf., 158, 154 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. H. M. Ötker and I. Akmehmet-Balcıoǧlu, J. Hazard. Mater., 122, 251 (2005).

    Article  PubMed  Google Scholar 

  11. G. P. Udayakumar, S. Muthusamy, B. Selvaganesh, N. Sivarajasekar, K. Rambabu, S. Sivamani, N. Sivakumar, J. P. Maran and A. Hosseini-Bandegharaei, Biotechnol. Adv., 52, 107815 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. S. Muthusaravanan, K. Balasubramani, R. Suresh, R. S. Ganesh, N. Sivarajasekar, H. Arul, K. Rambabu, G. Bharath, V. E. Sathishkumar, A. P. Murthy and F. Banat, Environ. Res., 200, 111428 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. K. Balasubramani, N. Sivarajasekar and M. Naushad, J. Mol. Liq., 301, 112426 (2020).

    Article  CAS  Google Scholar 

  14. D. Li, J. Gao, H. Dai, Z. Wang and W. Duan, Bioresour. Technol., 312, 123567 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. M. B. Ahmed, J. L. Zhou, H. H. Ngo and W. Guo, Sci. Total Environ., 532, 112 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Z. Lu, F. Chen, M. He, M. Song, Z. Ma, W. Shi, Y. Yan, J. Lan, F. Li and P. Xiao, Chem. Eng., 249, 15 (2014).

    Article  CAS  Google Scholar 

  17. S. Babić, M. Periša and I. Škorić, Chemosphere, 91, 1635 (2013).

    Article  PubMed  Google Scholar 

  18. K. Balasubramani, N. Sivarajasekar, S. Muthusaravanan, K. Ram, M. Naushad, T. Ahamad and G. Sharma, J. Mol. Liq., 319, 114371 (2020).

    Article  CAS  Google Scholar 

  19. M.-S. Han, Y.-W. Choi, J.-H. Song and C.-K. Wang, J. Korean Soc. Water Environ., 34, 149 (2018).

    Article  Google Scholar 

  20. M. Kermani, F. Bahrami Asl, M. Farzadkia, A. Esrafli, S. Salahshour Arian, M. Khazaei, Y. Dadban Shahamat and D. Zeynalzadeh, Desalin. Water Treat., 57, 16435 (2016).

    Article  CAS  Google Scholar 

  21. H. Guo, N. Gao, Y. Yang and Y. Zhang, Chem. Eng., 292, 82 (2016).

    Article  CAS  Google Scholar 

  22. Y. D. Shahamat, M. A. Zazouli, M. R. Zare and N. Mengelizadeh, Rsc Adv., 9, 16496 (2019).

    Article  Google Scholar 

  23. X. Li, C. Xiao, X. Ruan, Y. Hu, C. Zhang, J. Cheng and Y. Chen, Chem. Eng., 427, 130927 (2022).

    Article  CAS  Google Scholar 

  24. N. N. Duy, T. N. Hieu, T. P. Luu, X. B. Thanh, T. D. Thuy, J. J. Jiang, Y. S. Perng, F. Boujelbane and M. B. Ha, J. Water Process. Eng., 40, 101781 (2021).

    Article  Google Scholar 

  25. N. N. Duy, T. N. Hieu, T. P. Luu, T. N. Cong, T. G. D. Huong, Q. N. Hien, Y. C. Chen, N. B. Hiep, T. D. V. Hien, V. N. Truc and M. B. Ha, Environ. Technol. Innov., 21, 101315 (2021).

    Article  Google Scholar 

  26. L. Jia-Tong, L. Yong-Sheng, S. Qing, H. Da-Qian, Z. Dan and J. Wen-Bao, J. Adv. Oxid. Technol., 20, 20160173 (2017).

    Google Scholar 

  27. F. K. Tominaga, A. P. Dos Santos Batista, A. C. S. C. Teixeira and S. I. Borrely, J. Environ. Chem. Eng., 6, 4605 (2018).

    Article  CAS  Google Scholar 

  28. C. N. Kurucz, T. D. Waite and W. J. Cooper, Radiat. Phys. Chem., 45, 299 (1995).

    Article  CAS  Google Scholar 

  29. N. N. Duy, D. Van Phu, N. T. K. Lan, N. T. Duoc, N. Q. Hien, B. N. Hiep, B. N. Han and B. M. Ha, Acta Chem. Iasi, 27, 303 (2019).

    Article  CAS  Google Scholar 

  30. T. H. Kim, Y. K. Nam and M. J. Lee, J. Korean Phys. Soc., 54, 2109 (2009).

    Article  CAS  Google Scholar 

  31. J.-Y. Cho, Bull. Environ. Contam. Toxicol., 84, 450 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. W. Han, C. Zhong, L. Liang, Y. Sun, Y. Guan, L. Wang, X. Sun and J. Li, Electrochim. Acta, 130, 179 (2014).

    Article  CAS  Google Scholar 

  33. P. Nazari and S. R. Setayesh, Int. J. Environ. Sci. Technol., 16, 6329 (2019).

    Article  CAS  Google Scholar 

  34. R. Changotra, J. P. Guin, S. A. Khader, L. Varshney and A. Dhir, Chem. Eng., 356, 973 (2019).

    Article  CAS  Google Scholar 

  35. F. Özyonar, Cumhuriyet Sci. J., 39, 1127 (2018).

    Google Scholar 

  36. M. H. Rasoulifard, M. Akrami and M. R. Eskandarian, J. Taiwan Inst. Chem. Eng., 57, 77 (2015).

    Article  CAS  Google Scholar 

  37. Ö. Gökkuç, N. Yıldız, A. S. Koparal and Y. Yıldız, Int. J. Environ. Sci. Technol., 15, 449 (2018).

    Article  Google Scholar 

  38. M. Gholami, B. A. Souraki, A. Pendashteh, S. P. Mozhdehi and M. B. Marzouni, Desalin. Water Treat., 95, 96 (2017).

    Article  CAS  Google Scholar 

  39. J. Kotai, Instructions for preparation of modified nutrient solution Z8 for algae, Norwegian Institute for Water Research Publications, Oslo (1972).

    Google Scholar 

  40. OECD, Guidelines for testing of chemicals: Freshwater alga and cyanobacteria, growth inhibition test, Organization for the Economical Cooperation and Development, Paris, France (2006).

    Book  Google Scholar 

  41. ASTM, ISO/ASTM, 51275-13 (2004).

  42. A. A. Elezz, A. Easa, F. Atia and T. Ahmed, Data Br., 25, 104326 (2019).

    Article  Google Scholar 

  43. W. Klopfer, Int. J. Life Cycle Assess, 17, 1087 (2012).

    Article  Google Scholar 

  44. B. V. Pré Sustainability, Simapro (2021).

  45. E. Chatzisymeon, S. Foteinis, D. Mantzavinos and T. Tsoutsos, J. Clean. Prod., 54, 229 (2013).

    Article  CAS  Google Scholar 

  46. H. Qin, L. Chen, N. Lu, Y. Zhao and X. Yuan, Front. Environ. Sci. Eng., 6, 107 (2012).

    Article  CAS  Google Scholar 

  47. J.-Q. Xiong, M. B. Kurade and B.-H. Jeon, Environ. Pollut., 226, 486 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. P. T. T. Nguyen, H. T. Nguyen, U. N. P. Tran and H. Manh Bui, J. Chem., 9981738, 1 (2021).

    Google Scholar 

  49. K.-M. Lee, S. Yu, Y.-H. Choi and M. Lee, Int. J. Life Cycle Assess, 17, 565 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 16/2020/STS02 and Saigon Univesity (TD2020–26).

Author information

Authors and Affiliations

Authors

Contributions

The investigation, software, writing — original draft, writing — review & editing: Hong Thi Bich Truong Investigation, software, writing — original draft: Hiep Nghia Bui; Data curation, conceptualization, methodology: Hieu Trung Nguyen and Thanh-Luu Pham; Investigation, software, writing — original draft: Van-Truc Nguyen, Duy Ngoc Nguyen, Thi-Dieu-Hien Vo and Yuan-Shing Perng; Funding acquisition, supervision, conceived, designed the methodology, writing — review & editing: Ha Manh Bui and Linh Thi My Lam.

Corresponding author

Correspondence to Ha Manh Bui.

Ethics declarations

The authors confirm that the manuscript has been read and approved by all authors. The authors declare that this manuscript has not been published and not under consideration for publication everywhere.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Availability of Data and Materials

The data that support the findings of this study are openly available at [DOI].

Code availability (software application or custom code)

This study used SimaPro Faculty license with code “FFL Saigon 01”

Consent to Participate

The authors have been personally and actively involved in substantive work leading to the manuscript and will hold themselves jointly and individually responsible for its content.

Consent to Publish

The authors consent to publish this research.

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Electronic Supplementary Material

11814_2021_995_MOESM1_ESM.pdf

A Taguchi approach with electron-beam irradiation to optimize the efficiency of removing enrofloxacin from aqueous media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong, H.T.B., Bui, H.N., Nguyen, H.T. et al. A Taguchi approach with electron-beam irradiation to optimize the efficiency of removing enrofloxacin from aqueous media. Korean J. Chem. Eng. 39, 973–985 (2022). https://doi.org/10.1007/s11814-021-0995-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0995-x

Keywords

Navigation