Skip to main content
Log in

Toxic effects of enrofloxacin on Scenedesmus obliquus

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this article, the toxic effects of Enrofloxacin (ENFX) on Scenedesmus obliquus were studied, through investigating the growth, photosynthetic pigments, and protein contents. The possible toxic mechanisms of ENFX were analyzed by determining the superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, proline content, and superoxide anion (O 2 ) generation rate. Results showed that the growth of algae was inhibited by ENFX and the 50% effective concentration (EC50) values for 24, 48, 72, and 96 h of ENFX were 88.39, 63.86, 45.10, and 59.16 mg·L−1, respectively. After treated with ENFX for 96 h, the contents of photosynthetic pigments decreased with the increase of ENFX concentration, the content of soluble protein and the activity of SOD increased and then decreased, and the generation rate of superoxide anion (O 2 ) increased continually. The contents of MDA and proline changed little in lower ENFX concentration groups, but increased rapidly when treated with higher concentration groups. These results suggested that ENFX affected the growth of S. obliquus, and the main toxicity mechanism was that algal cells generated the reactive oxygen species under ENFX stress, and then the reactive oxygen species (ROS) induced the oxidation damages of biologic macromolecules and changed the biomembrane permeability further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives, 1999, 107(Suppl 6): 907–938

    Article  CAS  Google Scholar 

  2. Calamari D, Zuccato E, Castiglioni S, Bagnati R, Fanelli R. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy. Environmental Science & Technology, 2003, 37(7): 1241–1248

    Article  CAS  Google Scholar 

  3. Wiegel S, Aulinger A, Brockmeyer R, Harms H, Loffler J, Reincke H, Schmidt R, Stachel B, Von Tumpling W, Wanke A. Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 2004, 57(2): 107–126

    Article  CAS  Google Scholar 

  4. Williams R T. Human Pharmaceuticals: Assessing the Impacts on Aquatic Ecosystems. Pensacola: Society of Environmental Toxicology and Chemistry (SETAC) Press, 2005

    Google Scholar 

  5. Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology (Amsterdam, Netherlands), 2006, 76(2): 122–159

    Article  CAS  Google Scholar 

  6. Daughton C G, Jones-Lepp T L. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. American Chemical Society: Washington DC, 2001, 2–38

    Google Scholar 

  7. Halling-Sørensen B, Nors-Nielsen S, Lanzky P F, Ingerslev F, Holten-Lützhoft H C, Jørgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998, 36(2): 357–393

    Article  Google Scholar 

  8. Jones O A H, Voulvoulis N, Lester J N. Human pharmaceuticals in the aquatic environment a review. Environmental Technology, 2001, 22(12): 1383–1394

    Article  CAS  Google Scholar 

  9. Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 2002, 131(1–2): 5–17

    Article  CAS  Google Scholar 

  10. Kolpin D K, Furlong E T, Meyer M T, Thurman M E, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202–1211

    Article  CAS  Google Scholar 

  11. Halling-Sørensen B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Archives of Environmental Contamination and Toxicology, 2001, 40(4): 451–460

    Article  Google Scholar 

  12. Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 2008, 8(1): 1–13

    Article  CAS  Google Scholar 

  13. Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin, 2005, 51(1–4): 218–223

    Article  CAS  Google Scholar 

  14. Xiong L, Xie P, Sheng X M, Wu Z B, Xie L Q. Toxicity of cypermethrin on growth, pigments, and superoxide dismutase of Scenedesmus obliquus. Ecotoxicology and Environmental Safety, 2005, 60(2): 188–192

    Article  Google Scholar 

  15. Chen J M, Ma J Y, Cao W, Wang P W, Tong S M, Sun Y Z. Sensitivity of green and blue-green algae to methyl tert-butyl ether. Journal of Environmental Sciences (China), 2009, 21(4): 514–519

    Article  CAS  Google Scholar 

  16. US Environmental Protection Agency. Algae Assay Procedure Bottle Test, National Eutrophication Research Program. Corvallis, Oregon: US EPA. National Environmental Research Center, 1971, 1–82

    Google Scholar 

  17. Ministry of Agriculture of China. Determination of enrofloxacin and ciprofloxacin residues in animal food by high performance liquid chromatography. Chinese Journal of Veterinary Drug, 2003, 37(8): 11–13 (in Chinese)

    Google Scholar 

  18. Organization for Economic Cooperation and Development. OECD Guidelines for Testing of Chemicals: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. Paris: OECD, 2006, 7–9

    Google Scholar 

  19. Li H S. Principle and Technology of Plant Physiological Biochemical Experiment. Beijing: Higher Education Press, 2003, 134–137 (in Chinese)

    Google Scholar 

  20. Hao Z B, Cang J, Xu C. Experiment of Plant Physiology. Harbin: Harbin Institute of Technology Press, 2004, 67–113 (in Chinese)

    Google Scholar 

  21. Zhang Z A, Chen Z Y. Experiment Technology of Plant Physiology. Changchun: Jilin University Press, 2008, 190–191 (in Chinese)

    Google Scholar 

  22. Wu Y B, Liao X D, Wang Z S, Chen Z L, Wang Y M. The growth inhibition toxicity of enrofloxacin to Haemafococcus pluvialis. Journal of South China Agricultural University, 2005, 26(4): 99–101 (in Chinese)

    Google Scholar 

  23. Halling-Sørensen B. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 2000, 40(7): 731–739

    Article  Google Scholar 

  24. Wang X, Nie X P, Li K B. Acute toxicity of CPFX and TCCA to aquatic organisms. Ecologic Science, 2006, 25(2): 155–157 (in Chinese)

    CAS  Google Scholar 

  25. Nie X P, Lu J Y, Li X, Yang Y F. Toxic effects of norfloxacin on the growth and the activity of antioxidase of chlorella pyrenoidosa. Asian Journal of Ecotoxicology, 2007, 2(3): 327–332 (in Chinese)

    CAS  Google Scholar 

  26. Lu J Y, Li X, Yang Y T, Nie X P. Toxic effects of nutylated hydroxyanisole and norfloxacin on aquatic organisms. Ecologic Science, 2007, 26(1): 55–58 (in Chinese)

    Google Scholar 

  27. Wei C X, Zhang Y B, Guo J, Han B, Yang X, Yuan J L. Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Sciences (China), 2010, 22(1): 155–160

    Article  CAS  Google Scholar 

  28. Loggini B, Scartazza A, Brugnoli E, Navari-Izzo F. Antioxidant defense system, pigment composition and photosynthetic efficiency in two wheat cultivars subjected to drought. Plant Physiology, 1999, 119(3): 1091–1100

    Article  CAS  Google Scholar 

  29. Gao J, Sun M Z, Wang Q Y. Effects of copper ion on the growth of Isochrysis zhanjiangensis. Marine Fisheries Research, 2007, 28(4): 54–58 (in Chinese)

    Google Scholar 

  30. Geoffroy L, Dewez D, Vernet G, Popovic R. Different physiological parameters used in evaluation of oxyfluorfen effect on S.obliquus: validity of parameters as biomarkers. Archives of Environmental Contamination and Toxicology, 2003, 45(4): 439–454

    Article  Google Scholar 

  31. Gurbuz F, Ciftci H, Akcil A. Biodegradation of cyanide containing effluents by Scenedesmus obliquus. Journal of Hazardous Materials, 2009, 162(1): 74–79

    Article  CAS  Google Scholar 

  32. Alberte R S, Friedman A L, Gustafson D L, Rudnick MS, Lyman H. Light-harvesting systems of brown algae and diatoms. Isolation and characterization of chlorophyll a/c and chlorophyll a/fucoxanthin pigment-protein complexes. Biochimica et Biophysica Acta, 1981, 635(2): 304–316

    Article  CAS  Google Scholar 

  33. Singh P K, Tewari R K. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea L. plants. Journal of Environmental Biology, 2003, 24(1): 107–112

    CAS  Google Scholar 

  34. Reinheckel T, Noack H, Lorenz S, Wiswedel I, Augustin W. Comparison of protein oxidation and aldehyde formation during oxidative stress in isolated mitochondria. Free Radical Research, 1998, 29(4): 297–305

    Article  CAS  Google Scholar 

  35. Li N Y, Gao J F, Wang P H. The characteristics of induced protein in shoots of wheat seedlings under water stress. Acta Phytophysiologica Sinica, 1988, 24(1): 65–71 (in Chinese)

    Google Scholar 

  36. Ma J M, Li J, Zhang G N, Yang K J, Wang L, Wu Z B. Effects of POD and Hg2+ on seed germination and seedling growth of wheat. Chinese Bulletin of Botany, 2004, 21(5): 531–538 (in Chinese)

    Google Scholar 

  37. Dixit V, Pandey V, Shyam R. Chromium ions inactivate electrontransport and enhance superoxide generation in vivo in pea (Pisum sativum L.cv. Azad) root mitochondria. Plant, Cell & Environment, 2002, 25(5): 687–693

    CAS  Google Scholar 

  38. Lurie S, Ronen R, Lipsker Z, Aloni B. Effects of paclobutrazol and chilling temperatures on lipids, antioxidants and ATPase activity of plasma membrane isolated from green bell pepper fruits. Physiologia Plantarum, 1994, 91(4): 593–598

    Article  CAS  Google Scholar 

  39. Kishorekumar A, Jaleel C A, Manivannan P, Sankar B, Sridharan R, Murali P V, Panneerselvam R. Comparative effects of different triazole compounds on antioxidant metabolism of Solenostemon rotundifolius. Colloids and Surfaces. B, Biointerfaces, 2008, 62(2): 307–311

    Article  CAS  Google Scholar 

  40. Mittler R, Vanderauwera S, Gollery M, van Breusegem F. Reactive oxygen gene network of plants. Trends in Plant Science, 2004, 9 (10): 490–498

    Article  CAS  Google Scholar 

  41. Aibibu N, Liu Y G, Zeng GM, Wang X, Chen B B, Song H X, Xu L. Cadmium accumulation in vetiveria zizanioides and its effects on growth, physiological and biochemical characters. Bioresource Technology, 2010, 101(16): 6297–6303

    Article  CAS  Google Scholar 

  42. Sudhakar C, Lakshmi A, Giridarakumar S. Changes in the antioxidant enzymes efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Science, 2001, 161(3): 613–619

    CAS  Google Scholar 

  43. Khatun S, Ali M B, Hahn E J, Paek K Y. Copper toxicity in Withania somnifera: growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 2008, 64(3): 279–285

    Article  CAS  Google Scholar 

  44. Halliwell B, Gutteridge J M C. Free Radicals in Biology and Medicine. 3rd ed. New York: Oxford University Press Inc., 1999, 936

    Google Scholar 

  45. Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malondaldehyde and related aldehydes. Free Radical Biology & Medicine, 1991, 11(1): 81–128

    Article  CAS  Google Scholar 

  46. Seljeskog E, Hervig T, Mansoor M A. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Clinical Biochemistry, 2006, 39(9): 947–954

    Article  CAS  Google Scholar 

  47. Altinordulu S, Eraslan G. Effects of some quinolone antibiotics on malondialdehyde levels and catalase activity in chicks. Food and Chemical Toxicology, 2009, 47(11): 2821–2823

    Article  CAS  Google Scholar 

  48. Wu Z T, Hou W R. Study on the relation between the influences of KT and ABA and MDA on SOD activity and SOD comformation and hydrophobicity changes. Chinese Biochemical Journal, 1997, 13(6): 716–718 (in Chinese)

    CAS  Google Scholar 

  49. Alia, Pardha Saradhi P. Proline accumulation under heavy metal stress. Journal of Plant Physiology, 1991, 138(5): 554–558

    Article  CAS  Google Scholar 

  50. Alia, Pardha Saradhi P. Suppression in mitochondrial electron transport is the prime cause behind stress induced proline accumulation. Biochemical and Biophysical Research Communications, 1993, 193(1): 54–58

    Article  CAS  Google Scholar 

  51. Alia, Pardha Saradhi P, Mohanty P. Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant and Soil, 1993, 155–156(1): 497–500

    Article  Google Scholar 

  52. Dhir B, Sharmila P, Saradhi P P. Hydrophytes lack potential to exhibit cadmium stress induced enhancement in lipid peroxidation and accumulation of proline. Aquatic Toxicology (Amsterdam, Netherlands), 2004, 66(2): 141–147

    Article  CAS  Google Scholar 

  53. Lin C C, Kao C H. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Science, 1996, 114(2): 121–128

    Article  CAS  Google Scholar 

  54. Buetler T M, Cottet-Maire F, Krauskopf A, Ruegg U T. Does cyclosporin A generate free radicals? Trends in Pharmacological Sciences, 2000, 21(8): 288–290

    Article  CAS  Google Scholar 

  55. Hu Q Q, Xiong L, Tianpei X Z, Li W Y. Toxic effects of dibutyl phthalate (DBP) on Scenedesmus obliquus. Asian Journal of Ecotoxicology, 2008, 3(1): 87–92 (in Chinese)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, H., Chen, L., Lu, N. et al. Toxic effects of enrofloxacin on Scenedesmus obliquus . Front. Environ. Sci. Eng. 6, 107–116 (2012). https://doi.org/10.1007/s11783-011-0327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0327-1

Keywords

Navigation