Skip to main content
Log in

Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Digital light processing (DLP) 3D printing has received increasing attention due to high-resolution printing capability, mass productivity, and cheap equipment cost. Most of all, the layer resolution less than 50 µm overwhelms 200–300 µm layer resolution of its competitive technology, filament deposition modeling (FDM) 3D printing. Despite the advantage of the high resolution, weak mechanical properties of DLP 3D printouts have limited their industrial use. One of the easiest ways to improve mechanical property is the use of multi-materials that complement each other’s weak property However, DLP 3D printing of multi-material printouts with reliable adhesion has been largely unexplored. In this study, we compared the mechanical properties of four pairs of multi-materials consisting of two different materials of the same thickness. A composition with highest modulus and ultimate strength was fixed as the first half layer, and the acrylate of the composition for the other half layer was modulated with a monomer having a functionality between 1 and 3. If the acrylate monomer’s functionality for the other half layer was less than three, the multi-material printout showed nearly averaged mechanical property of each material. We speculate that low functional acrylate with lower viscosity allows sufficient polymerization at the interface, enabling reliable adhesion. This approach that enables successful multi-material printing with improved adhesion and complementary mechanical properties will extend the use of DLP 3D printing in a broad range of industrial application that requires both sophisticated shape and mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Wang, M. Jiang, Z. Zhou, J. Gou and D. Hui, Compos. B. Eng., 110, 442 (2017).

    Article  CAS  Google Scholar 

  2. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen and D. Hui, Compos. B. Eng., 143, 172 (2018).

    Article  CAS  Google Scholar 

  3. S. C. Ligon, R. Liska, J. Stampfl, M. Gurr and R. Mülhaupt, Chem. Rev., 117, 10212 (2017).

    Article  CAS  Google Scholar 

  4. M. Vaezi, S. Chianrabutra, B. Mellor and S. Yang, Virtual Phys. Prptotyp., 8, 19 (2013).

    Article  Google Scholar 

  5. A. Bandyopadhyay and B. Heer, Mater. Sci. Eng. R Rep., 129, 1 (2018).

    Article  Google Scholar 

  6. S. Derakhshanfar, R. Mbeleck, K. Xu, X. Zhang, W. Zhong and M. Xing, Bioact. Mater., 3, 144 (2018).

    Article  Google Scholar 

  7. W. Liu, Y. S. Zhang, M. A. Heinrich, F. D. Ferrari, H. L. Jang, S. M. Bakht, M. M. Alvarez, J. Yang, Y.-C. Li, G. T. Santiago, A. K. Miri, K. Zhu, P. Khoshakhlagh, G. Prakash, H. Cheng, X. Guan, Z. Zhong, J. Ju, G. H. Zhu, X. Jin, S. R. Shin, M. R. Dokmeci and A. Khademhosseini, Adv. Mater., 29, 1604630 (2017).

    Article  Google Scholar 

  8. M. Rafiee, R. D. Farahani and D. Therriault, Adv. Sci., 7, 1902307 (2020).

    Article  CAS  Google Scholar 

  9. S.-J. Jeon, A. W. Hauser and R. C. Hayward, Acc. Chem. Res., 50, 161 (2017).

    Article  CAS  Google Scholar 

  10. S. J. Keating, M. I. Gariboldi, W. G. Patrick, S. Sharma, D. S. Kong and N. Oxman, PLoS One, 11, e0160624 (2016).

    Article  Google Scholar 

  11. A. Cazón-Martín, M. Iturrizaga-Campelo, L. Matey-Munoz, M. I. Rodríguez-Ferradas, P. Morer-Camo and S. Ausejo-Munoz, Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol., 233, 160 (2019).

    Google Scholar 

  12. J. P. Moore and C. B. Williams, Rapid Prototyp. J., 21, 675 (2015).

    Article  Google Scholar 

  13. T. S. Lumpe, J. Mueller and K. Shea, Mater. Des., 162, 1 (2019).

    Article  Google Scholar 

  14. Z. Jiang, B. Diggle, M. L. Tan, J. Viktorova, C. W. Bennett and L. A. Connal, Adv. Sci., 7, 2001379 (2020).

    Article  CAS  Google Scholar 

  15. D. Popescu, A. Zapciu, C. Amza, F. Baciu and R. Marinescu, Polym. Test., 69, 157 (2018).

    Article  CAS  Google Scholar 

  16. L. R. Lopes, A. F. Silva and O. S. Carneiro, Addit. Manuf., 23, 45 (2018).

    CAS  Google Scholar 

  17. C. Bellehumeur, L. Li, Q. Sun and P. Gu, J. Manuf. Process, 6, 170 (2004).

    Article  Google Scholar 

  18. D. Espalin, J. A. Ramirez, F. Medina and R. Wicker, Rapid Prototyp. J., 20, 236 (2014).

    Article  Google Scholar 

  19. L. Li, Q. Lin, M. Tang, A. J. E. Duncan and C. Ke, Chem. Eur. J., 25, 10768 (2019).

    Article  CAS  Google Scholar 

  20. P. Jiang, Z. Ji, X. Zhang, Z. Liu and X. Wang, Prog. Addit. Manuf., 3, 65 (2018).

    Article  Google Scholar 

  21. V. G. Rocha, E. Saiz, L. S. Tirichenko and E. García-Tuñón, J. Mater. Chem. A, 8, 15646 (2020).

    Article  CAS  Google Scholar 

  22. K. Tian, Z. Suo and J. J. Vlassak, ACS Appl. Mater. Interfaces, 12, 31002 (2020).

    Article  CAS  Google Scholar 

  23. A. Bagheri and J. Jin, ACS Appl. Polym. Mater., 1, 593 (2019).

    Article  CAS  Google Scholar 

  24. J. Zhang and P. Xiao, Polym. Chem., 9, 1530 (2018).

    Article  CAS  Google Scholar 

  25. H. Quan, T. Zhang, H. Xu, S. Luo, J. Nie and X. Zhu, Bioact. Mater., 5, 110 (2020).

    Article  Google Scholar 

  26. Q. Ge, Z. Li, Z. Wang, K. Kowsari, W. Zhang, X. He, J. Zhou and N. X. Fang, Int. J. Extrem. Manuf., 2, 022004 (2020).

    Article  CAS  Google Scholar 

  27. J. Borrello, P. Nasser, J. C. Iatridi and K. D. Costa, Addit. Manuf., 23, 374 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Q. Ge, A. H. Sakhaei, H. Lee, C. K. Dunn, N. X. Fang and M. L. Dunn, Sci. Rep., 6, 31110 (2016).

    Article  Google Scholar 

  29. D. Han, C. Yang, N. X. Fang and H. Lee, Addit. Manuf., 27, 606 (2019).

    CAS  Google Scholar 

  30. B. Khatri, M. Frey, A. Raouf-Fahmy, M.-V. Scharla and T. Hanemann, Micromachines, 11, 532 (2020).

    Article  Google Scholar 

  31. T. Maruyama, H. Hirata, T. Furukawa and S. Maruo, Opt. Mater. Express, 10, 2522 (2020).

    Article  CAS  Google Scholar 

  32. B. Zhang, S. Li, H. Hingorani, A. Serjouei, L. Larush, A. A. Pawar, W. H. Goh, A. H. Sakhaei, M. Hashimoto, K. Kowsari, S. Magdassi and Q. Ge, J. Mater. Chem. B, 6, 3246 (2018).

    Article  CAS  Google Scholar 

  33. C. Creton, MRS Bull., 28, 434 (2003).

    Article  CAS  Google Scholar 

  34. G. Taormina, C. Sciancalepore, M. Messori and F. Bondioli, J. Appl. Biomater. Funct. Mater., 16, 151 (2018).

    CAS  PubMed  Google Scholar 

  35. W. T. Becker and R. J. Shipley, Failure analysis and prevention, ASM International, Materials Park (2002).

    Book  Google Scholar 

  36. S. Ebnesajjad, Handbook of adhesives and surface preparation: Technology, applications and manufacturing, William Andrew, Amsterdam (2011).

    Google Scholar 

  37. B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini and H. K. Taylor, Science, 363, 1075 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research was supported by Kumoh National Institute of Technology (2020-022-300-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seog-Jin Jeon.

Additional information

Notes

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwangbo, H., Jeon, SJ. Digital light processing 3D printing of multi-materials with improved adhesion using resins containing low functional acrylates. Korean J. Chem. Eng. 39, 451–459 (2022). https://doi.org/10.1007/s11814-021-0934-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0934-x

Keywords

Navigation