Skip to main content

Advertisement

Log in

Recent advances in direct ink writing of electronic components and functional devices

  • Review Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

Three dimensional (3D) printing technologies, known as the additive manufacturing, have been attracting extensive interests in various fields, including the academic world, industries and even daily life. It has special capabilities that can be used for increasing shape or structure complexity and fabrication efficiency, while reducing the waste materials, capital cost and design cycle for manufacturing. Among these, fabrication of functional components or devices for microelectronic systems with 3D printing technologies is still an emerging field. Recently, a series of 3D printed functional components and devices for electronics have been reported, especially with the widely used direct ink writing 3D printing. This paper will focus on materials and practical applications of 3D printing for electronic units and systems, including microelectrodes, supercapacitances, electronic circuits, batteries and so on. The implementation of 3D printing for electronics with advanced materials will have great advantage in terms of performance, microstructures, product flexibility and tailored shape along with low cost, less waste and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from ref [27]. Copyright 2014, Wiley-VCH

Fig. 2

Reprinted with permission from ref [47]. Copyright 2004, Elsevier

Fig. 3

Reproduced with permission from ref [51]. Copyright 2017, ACS

Fig. 4

Reproduced with permission from ref [69]. Copyright 2015, Wiley-VCH

Fig. 5

Reproduced with permission from ref [70]. Copyright 2017, Nature

Fig. 6

Reprinted with permission from ref [85]. Copyright 2010, RSC

Fig. 7

Reproduced with permission from ref [94]. Copyright 2009, Science

Fig. 8

Reproduced with permission from ref [102]. Copyright 2014, ACS

Fig. 9

Reprinted with permission from ref [103]. Copyright 2017, ACS

Fig. 10

Reproduced with permission from ref [104]. Copyright 2016, Elsevier

Fig. 11

Reproduces with permission from ref [110]. Copyright 2017, Wiley-VCH

Fig. 12

Reproduced with permission from ref [116]. Copyright 2014, ACS

Fig. 13

Reproduced with permission from ref [129]. Copyright 2013, Wiley-VCH

Fig. 14

Reproduced with permission from ref [128]. Copyright 2016, Wiley-VCH

Fig. 15

Reproduced with permission from ref [136]. Copyright 2014, ACS. (Color figure online)

Similar content being viewed by others

References

  1. Ruiz-Morales JC, Tarancón A, Canales-Vázquez J, Méndez-Ramos J, Hernández-Afonso L, Acosta-Mora P, Marín Rueda JR, Fernández-González R (2017) Three dimensional printing of components and functional devices for energy and environmental applications. Energy Environ Sci 10(4):846–859. https://doi.org/10.1039/c6ee03526d

    Google Scholar 

  2. Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661. https://doi.org/10.1021/jz1007966

    Google Scholar 

  3. Ruiz-Morales JC, Canales-Vazquez J, Savaniu C, Marrero-Lopez D, Zhou W, Irvine JT (2006) Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation. Nature 439(7076):568–571. https://doi.org/10.1038/nature04438

    Google Scholar 

  4. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536. https://doi.org/10.1016/j.apenergy.2014.09.081

    Google Scholar 

  5. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 105(3):4245–4269. https://doi.org/10.1021/cr040110e

    Google Scholar 

  6. Haas O, Cairns EJ (1999) Electrochemical energy storage. Phys Chem 95:163–198. https://doi.org/10.1039/pc095163

    Google Scholar 

  7. Mohammed MG, Kramer R (2017) All-printed flexible and stretchable electronics. Adv Mater. https://doi.org/10.1002/adma.201604965

    Google Scholar 

  8. Liu L, Niu Z, Chen J (2016) Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem Soc Rev 45(15):4340–4363. https://doi.org/10.1039/c6cs00041j

    Google Scholar 

  9. Aravindan V, Sundaramurthy J, Kumar PS, Shubha N, Ling WC, Ramakrishna S, Madhavi S (2013) A novel strategy to construct high performance lithium-ion cells using one dimensional electrospun nanofibers, electrodes and separators. Nanoscale 5(21):10636–10645. https://doi.org/10.1039/c3nr04486f

    Google Scholar 

  10. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci. https://doi.org/10.1039/c2ee23977a

    Google Scholar 

  11. Wang D-W, Li F, Liu M, Lu GQ, Cheng H-M (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem 120(2):379–382. https://doi.org/10.1002/ange.200702721

    Google Scholar 

  12. Dhar NK, Johnson DC, Prieto AL, Balaya P, Dutta AK (2013) Three-dimensional lithium-ion batteries with interdigitated electrodes. Paper presented at the energy harvesting and storage: materials, devices, and applications IV, 8728: 872805–872810. https://doi.org/10.1117/12.2016142

  13. Farahani RD, Dube M, Therriault D (2016) Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 28(28):5794–5821. https://doi.org/10.1002/adma.201506215

    Google Scholar 

  14. Hassain HSSA (2010) Fabrication of ceramics and ceramic composite microcomponents using soft lithography. PhD thesis, The University of Birmingham, United Kingdom

  15. Brookes KJA (2015) 3D-printing style additive manufacturing for commercial hardmetals. Metal Powder Rep 70(3):137–140. https://doi.org/10.1016/j.mprp.2015.04.011

    Google Scholar 

  16. Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378. https://doi.org/10.1016/s0142-9612(03)00030-9

    Google Scholar 

  17. Chua CK, Leong KF (2017) 3D printing and additive manufacturing: principles and applications (the 5th edition of rapid prototyping: principles and applications). World Scientific, Singapore

    Google Scholar 

  18. Highley CB, Rodell CB, Burdick JA (2015) Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv Mater 27(34):5075–5079. https://doi.org/10.1002/adma.201501234

    Google Scholar 

  19. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P (2012) A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33(26):6020–6041. https://doi.org/10.1016/j.biomaterials.2012.04.050

    Google Scholar 

  20. Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J (2016) 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. https://doi.org/10.1007/s10404-016-1715-4

    Google Scholar 

  21. Hon KKB, Li L, Hutchings IM (2008) Direct writing technology—advances and developments. CIRP Ann 57(2):601–620. https://doi.org/10.1016/j.cirp.2008.09.006

    Google Scholar 

  22. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Google Scholar 

  23. Campbell TA, Ivanova OS (2013) 3D printing of multifunctional nanocomposites. Nano Today 8(2):119–120. https://doi.org/10.1016/j.nantod.2012.12.002

    Google Scholar 

  24. Manyika J, Chui M, Bughin J, Dobbs R. Bisson Peter, Marrs A (2013) Disruptive technologies: advances that will transform life, business, and the global economy, MGI

  25. Tian X, Jin J, Yuan S, Chua CK, Tor SB, Zhou K (2017) Emerging 3D-printed electrochemical energy storage devices: a critical review. Adv Energy Mater. https://doi.org/10.1002/aenm.201700127

    Google Scholar 

  26. Tay BY, Evans JRG, Edirisinghe MJ (2013) Solid freeform fabrication of ceramics. Int Mater Rev 48(6):341–370. https://doi.org/10.1179/095066003225010263

    Google Scholar 

  27. Travitzky N, Bonet A, Dermeik B, Fey T, Filbert-Demut I, Schlier L, Schlordt T, Greil P (2014) Additive manufacturing of ceramic-based materials. Adv Eng Mater 16(6):729–754. https://doi.org/10.1002/adem.201400097

    Google Scholar 

  28. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45(10):2740–2755. https://doi.org/10.1039/c5cs00714c

    Google Scholar 

  29. Tang Y, Zhang Y, Rui X, Qi D, Luo Y, Leow WR, Chen S, Guo J, Wei J, Li W, Deng J, Lai Y, Ma B, Chen X (2016) Conductive inks based on a lithium titanate nanotube gel for high-rate lithium-ion batteries with customized configuration. Adv Mater 28(8):1567–1576. https://doi.org/10.1002/adma.201505161

    Google Scholar 

  30. Crump SS, Stratasys, Inc. (1992) Apparatus and method for creating three-dimensional objects. U.S. Patent 5121329

  31. Yardimci AM, Guceri SI, Danforth SC, Agarwala M, Safari A (1995) Numerical modeling of fused deposition processing. Am Soc Mech Eng 69:1225–1235

    Google Scholar 

  32. Ligon SC, Liska R, Stampfl J, Gurr M, Mulhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074

    Google Scholar 

  33. Andre JC, Mehaute AL, De Witte O (1984) Com agn Industrielle des Lasers Cilas Alcatel) Dispositif pour Realiser un Modele de Piece Industrielle. French Patent App. 2567668

  34. Liska R, Schuster M, Inführ R, Turecek C, Fritscher C, Seidl B, Schmidt V, Kuna V, Haase A, Varga F (2007) Photopolymers for rapid prototyping. J Coat Technol Res 4(4):505–510

    Google Scholar 

  35. Fouassier JP, Allonas X, Burget D (2003) Photopolymerization reactions under visible lights: principle, mechanisms and examples of applications. Prog Org Coat 47(1):16–36. https://doi.org/10.1016/s0300-9440(03)00011-0

    Google Scholar 

  36. Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM (2014) Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem 86(7):3240–3253. https://doi.org/10.1021/ac403397r

    Google Scholar 

  37. Noorani R (2006) Rapid prototyping, principles and applications. Wiley, Hoboken, pp 108–155

    Google Scholar 

  38. Karapatis NP, Egger G, Gygax PE, Glardon R (1998) Optimization of powder layer density in selective laser sintering. Proceedings of the SFF Symposium, pp 79–87

  39. Gurr M, Mulhaupt R (2012) Polymer science: a comprehensive reference. In: Matyjaszewski K, Moller M (eds), vol. 8. Elsevier BV, Amsterdam, pp 77–99

  40. Pfister A (2005) Neue Materialsysteme für das Dreidimensionale Drucken und das Selektive Lasersintern. Ph.D. Thesis, Albert-LudwigsUniversitat

  41. Lewis JA, Smay JE, Stuecker J, Cesarano J (2006) Direct ink writing of three-dimensional ceramic structures. J Am Ceram Soc 89(12):3599–3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x

    Google Scholar 

  42. Xu Q, Lv Y, Dong C, Sreeprased TS, Tian A, Zhang H, Tang Y, Yu Z, Li N (2015) Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale 7(25):10883–10895. https://doi.org/10.1039/c5nr02048d

    Google Scholar 

  43. Kalsoom U, Nesterenko PN, Paull B (2016) Recent developments in 3D printable composite materials. RSC Adv 6(65):60355–60371. https://doi.org/10.1039/c6ra11334f

    Google Scholar 

  44. Zhu C, Han TY, Duoss EB, Golobic AM, Kuntz JD, Spadaccini CM, Worsley MA (2015) Highly compressible 3D periodic graphene aerogel microlattices. Nat Commun 6:6962. https://doi.org/10.1038/ncomms7962

    Google Scholar 

  45. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T (2016) Graphene oxide-based electrode inks for 3D-printed Lithium-ion batteries. Adv Mater 28:2587–2594

    Google Scholar 

  46. Lewis JA (2006) Direct ink writing of 3D functional materials. Adv Funct Mater 16:2193–2204

    Google Scholar 

  47. Lewis JA, Gratson GM (2004) Direct writing in three dimensions. Mater Today 7:32–39

    Google Scholar 

  48. Fu K, Yao Y, Dai J, Hu L (2017) Progress in 3D printing of carbon materials for energy-related applications. Adv Mater 29 (9). https://doi.org/10.1002/adma.201603486

  49. Santhiago M, Corrêa CC, Bernardes JS, Pereira MP, Oliveria LJM, Strauss M, Bufon CCB (2017) Flexible and foldable fully-printed carbon black conductive nanostructures on paper for high-performance electronic, electrochemical, and wearable devices. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b06598

    Google Scholar 

  50. Wang S, Liu N, Tao J, Yang C, Liu W, Shi Y, Wang Y, Su J, Li L, Gao Y (2015) Inkjet printing of conductive patterns and supercapacitors using a multi-walled carbon nanotube/Ag nanoparticle based ink. J Mater Chem A 3:2407–2413

    Google Scholar 

  51. Chen B, Jiang Y, Tang X, Pan Y, Hu S (2017) Fully-packaged carbon nanotube supercapacitors by direct ink writing on flexible substrates. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.7b06804

    Google Scholar 

  52. Naficy S, Jalili R, Aboutalebi SH, Gorkin Iii RA, Konstantinov K, Innis PC, Spinks GM, Poulin P, Wallace GG (2014) Graphene oxide dispersions: tuning rheology to enable fabrication. Mater Horiz 1(3):326–331. https://doi.org/10.1039/c3mh00144j

    Google Scholar 

  53. Secor EB, Prabhumirashi PL, Puntambekar K, Geier ML, Hersam MC (2013) Inkjet printing of high conductivity, flexible graphene patterns. J Phys Chem Lett 4(8):1347–1351. https://doi.org/10.1021/jz400644c

    Google Scholar 

  54. Yoo EJ, Kim J, Hosono E, Zhou HS, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8(8):2277–2282. https://doi.org/10.1021/nl800957b

    Google Scholar 

  55. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8(1):323–327. https://doi.org/10.1021/nl075838r

    Google Scholar 

  56. Goodenough JB (2015) Energy storage materials: a perspective. Energy Storage Mater 1:158–161. https://doi.org/10.1016/j.ensm.2015.07.001

    Google Scholar 

  57. Zhang SW, Lv W, Luo C, You C-H, Zhang J, Pan Z-Z, Kang F-Y, Yang Q-H (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater 3:18–23. https://doi.org/10.1016/j.ensm.2015.12.004

    Google Scholar 

  58. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9(2):814–818. https://doi.org/10.1021/nl8035367

    Google Scholar 

  59. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Google Scholar 

  60. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655

    Google Scholar 

  61. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Google Scholar 

  62. Machado BF, Serp P (2012) Graphene-based materials for catalysis. Catal Sci Technol 2(1):54–75. https://doi.org/10.1039/c1cy00361e

    Google Scholar 

  63. Sutter PW, Flege J-I, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411

    Google Scholar 

  64. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21(21):2180–2184. https://doi.org/10.1002/adma.200803606

    Google Scholar 

  65. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Google Scholar 

  66. HadjizadehA DoillonCJ (2010) Directional migration of endothelial cells towards angiogenesis using polymer fibres in a 3D co-culture system. J Tissue Eng Regen Med 4(7):524–531. https://doi.org/10.1002/term.269

    Google Scholar 

  67. Yao Y, Fu K, Yan Y, Dai J, Chen Y, Wang Y, Zhang B, Hitz E, Hu L (2016) Three-dimensional printable high-temperature and high-rate heater. ACS Nano 10:5272–5279

    Google Scholar 

  68. Bao W, Pickel AD, Zhang Q, Chen Y, Yao Y, Wan Y, Fu K, Wang Y, Dai J, Zhu H, Drew D, Fuhrer M, Dames C, Hu L (2016) Flexible, high temperature, planar lighting with large scale printable nanocarbon paper. Adv Mater 28(23):4684–4691. https://doi.org/10.1002/adma.201506116

    Google Scholar 

  69. Secor EB, Ahn BY, Gao TZ, Lewis JA, Hersam MC (2015) Rapid and versatile photonic annealing of graphene inks for flexible printed electronics. Adv Mater 27(42):6683–6688. https://doi.org/10.1002/adma.201502866

    Google Scholar 

  70. Park JS, Kim T, Kim WS (2017) Conductive cellulose composites with low percolation threshold for 3D printed electronics. Sci Rep 7(1):3246. https://doi.org/10.1038/s41598-017-03365-w

    Google Scholar 

  71. Xu W et al (2015) Electrically conductive silver nanowires-filed methylcellulose composite transparent films with high mechanical properties. Mater Lett 152:173–176

    Google Scholar 

  72. White SI et al (2010) Electrical percolation behavior in silver nanowire-polystyrene composites: simulation and experiment. Adv Funct Mater 20:2709–2716

    Google Scholar 

  73. Inui T et al. (2014) High-dielectric paper composite consisting of cellulose nanofier and silver nanowire. 14th IEEE International Conference on Nanotechnology. https://doi.org/10.1109/nano.2014.6967965

  74. Sun Y, Mayers B, Herricks T, Xia Y (2003) Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett 3:955–960

    Google Scholar 

  75. Hu N et al (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936

    Google Scholar 

  76. Lonjon A, Demont P, Dantras E, Lacabanne C (2012) Low filed conductive P(VDF-TrFE) composites: influence of silver particles aspect ratio on percolation threshold from spheres to nanowires. J Non-Cryst Solids 358:3074–3078

    Google Scholar 

  77. Hawkins DMS (1999) Thesis Dissertation (Dept. of Chem., Rochester Institute of Technology: Rochester, NY)

  78. Edali M, Esmail MN, Vatistas GH (2001) Rheological properties of high concentrations of carboxymethyl cellulose solutions. J Appl Polym Sci 79:1787–1801

    Google Scholar 

  79. Benchabane A, Bekkour K (2008) Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid Polym Sci 286:1173–1180

    Google Scholar 

  80. Jeong S et al (2012) Natural cellulose as binder for lithium battery electrodes. J Power Sources 199:331–335

    Google Scholar 

  81. Buqa H et al (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    Google Scholar 

  82. Kim G et al (2011) Use of natural binders and ionic liquid electrolytes for greener and safer lithium-ion batteries. J Power Sources 196:2187–2194

    Google Scholar 

  83. Zhang D, Chi B, Li B, Gao Z, Du Y, Guo J, Wei J (2016) Fabrication of highly conductive graphene flexible circuits by 3D printing. Synth Met 217:79–86. https://doi.org/10.1016/j.synthmet.2016.03.014

    Google Scholar 

  84. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Google Scholar 

  85. Ahn BY, Lorang DJ, Duoss EB, Lewis JA (2010) Direct-write assembly of microperiodic planar and spanning ITO microelectrodes. Chem Commun 46(38):7118–7120. https://doi.org/10.1039/c0cc01691h

    Google Scholar 

  86. Sirringhaus H, Kawase T, Friend RH, Shhimoda T, Inbasekaran M (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2128

    Google Scholar 

  87. Forrest SR (2004) The path to ubiquitous and low-costorganic electronic appliances on plastic. Nature 428(6986):911–918

    Google Scholar 

  88. Sun Y, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916

    Google Scholar 

  89. Menard E, Meitl MA, Sun YG (2007) Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev 107:1117–1160

    Google Scholar 

  90. LeMieux MC (2008) Self-sorted, aligned nanotube networks for thin-film transistors. Science 321:101–104

    Google Scholar 

  91. Cao Q, Kim SH, Pimparkar N, Kulkarni P, Wang C, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454(7203):495–500. https://doi.org/10.1038/nature07110

    Google Scholar 

  92. Foster CW, Down MP, Zhang Y, Ji X, Rowley-Neale SJ, Simth GC, Kelly PJ, Banks CE (2017) 3D printed graphene based energy storage devices. Sci Rep 7:42233. https://doi.org/10.1038/srep42233

    Google Scholar 

  93. Symed MD et al (2012) Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat Chem 4:349–354

    Google Scholar 

  94. Ahn BY, Duoss EB, Motala MJ, Guo X, Park S, Xiong J, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1950–1953. https://doi.org/10.1126/science.1168375

    Google Scholar 

  95. Beidaghi M, Wang C (2012) Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv Funct Mater 22(21):4501–4510. https://doi.org/10.1002/adfm.201201292

    Google Scholar 

  96. Simon P, Gogotsi Y (2008) Graphene-based supercapacitor with an ultrahigh energy density. Nat Mater 7:845–854

    Google Scholar 

  97. El-Kady MF, Kaner RB (2013) Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun 4:1475. https://doi.org/10.1038/ncomms2446

    Google Scholar 

  98. Salanne M, Rotenberg B, Naoi K, Kaneko K, Taberna PL, Grey CP, Dunn B, Simon P (2016) Efficient storage mechanisms for building better supercapacitors. Nat Energy. https://doi.org/10.1038/nenergy.2016.70

    Google Scholar 

  99. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539. https://doi.org/10.1039/c5cs00303b

    Google Scholar 

  100. Shen C, Wang X, Zhang W, Kang F (2011) A high-performance three-dimensional micro supercapacitor based on self-supporting composite materials. J Power Sources 196(23):10465–10471

    Google Scholar 

  101. Nystrom G, Marais A, Karabulut E, Wagberg L, Cui Y, Hamedi MM (2015) Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat Commun 6:7259. https://doi.org/10.1038/ncomms8259

    Google Scholar 

  102. Zhu C, Liu T, Qian F, Han TY, Duoss EB, Kuntz JD, Spadaccini CM, Worsley MA, Li Y (2016) Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett 16(6):3448–3456. https://doi.org/10.1021/acs.nanolett.5b04965

    Google Scholar 

  103. Yu W, Zhou H, Li BQ, Ding S (2017) 3D printing of carbon nanotubes-based microsupercapacitors. ACS Appl Mater Interfaces 9(5):4597–4604. https://doi.org/10.1021/acsami.6b13904

    Google Scholar 

  104. Yang Y, Chen Z, Song X, Zhu B, Hsiai T, Wu P-I, Xiong R, Shi J, Chen Y, Zhou Q, Shung KK (2016) Three dimensional printing of high dielectric capacitor using projection based stereolithography method. Nano Energy 22:414–421. https://doi.org/10.1016/j.nanoen.2016.02.045

    Google Scholar 

  105. Secor EB, Hersam MC (2015) Emerging carbon and post-carbon nanomaterial inks for printed electronics. J Phys Chem Lett 6(4):620–626. https://doi.org/10.1021/jz502431r

    Google Scholar 

  106. Torrisi F, Hasan T, Wu WP, Sun ZP, Lombardo A, Kulmala TS, Hsieh GW, Jung S, Bonaccorso F, Paul PJ (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006

    Google Scholar 

  107. Kamyshny A, Magdassi S (2014) Conductive nanomaterials for printed electronics. Small 10(17):3515–3535. https://doi.org/10.1002/smll.201303000

    Google Scholar 

  108. Garcia-Tunon E, Barg S, Franco J, Bell R, Eslava S, D’Elia E, Maher RC, Guitian F, Saiz E (2015) Printing in three dimensions with graphene. Adv Mater 27(10):1688–1693. https://doi.org/10.1002/adma.201405046

    Google Scholar 

  109. Zhang Q, Zhang F, Medarametla SP, Li H, Zhou C, Lin D (2016) 3D printing of graphene aerogels. Small 12(13):1702–1708. https://doi.org/10.1002/smll.201503524

    Google Scholar 

  110. Valentine AD, Busbee TA, Boley JW, Raney JR, Chortos A, Kotikian A, Berrigan JD, Durstock MF, Lewis JA (2017) Hybrid 3D printing of soft electronics. Adv Mater 29(40):1703817. https://doi.org/10.1002/adma.201703817

    Google Scholar 

  111. Azzaroni O, Fonticelli MH, Benítez G, Schilardi PL, Gago R, Caretti I, Vázquez L, Salvarezza RC (2004) Direct nanopatterning of metal surfaces using self-assembled molecular films. Adv Mater 16(5):405–409. https://doi.org/10.1002/adma.200306190

    Google Scholar 

  112. Wang X, Hu H, Shen Y, Zhou X, Zheng Z (2011) Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv Mater 23(27):3090–3094. https://doi.org/10.1002/adma.201101120

    Google Scholar 

  113. Wang X, Zhang T, Kobe B, Lau WM, Yang J (2013) Grafting of polyelectrolytes onto hydrocarbon surfaces by high-energy hydrogen induced cross-linking for making metallized polymer films. Chem Commun 49(41):4658–4660. https://doi.org/10.1039/c3cc41644e

    Google Scholar 

  114. Liu X, Zhou X, Li Y, Zheng Z (2012) Surface-grafted polymer-assisted electroless deposition of metals for flexible and stretchable electronics. Chem Asian J 7(5):862–870. https://doi.org/10.1002/asia.201100946

    Google Scholar 

  115. Guo R, Yu Y, Xie Z, Liu X, Zhou X, Gao Y, Liu Z, Zhou F, Yang Y, Zheng Z (2013) Matrix-assisted catalytic printing for the fabrication of multiscale, flexible, foldable, and stretchable metal conductors. Adv Mater 25(24):3343–3350. https://doi.org/10.1002/adma.201301184

    Google Scholar 

  116. Wang X, Guo Q, Cai X, Zhou S, Kobe B, Yang J (2014) Initiator-integrated 3D printing enables the formation of complex metallic architectures. ACS Appl Mater Interfaces 6(4):2583–2587. https://doi.org/10.1021/am4050822

    Google Scholar 

  117. Ye Q, Wang X, Hu H, Wang D, Li S, Zhou F (2009) Polyelectrolyte brush templated multiple loading of Pd nanoparticles onto TiO2 nanowires via regenerative counterion exchange-reduction. J Phys Chem C 113:7677–7683

    Google Scholar 

  118. Azzaroni O, Zheng Z, Yang Z, Huck WTS (2006) Polyelectrolyte brushes as efficient ultrathin platforms for site-selective copper electroless deposition. Langmuir 22:6730–6733

    Google Scholar 

  119. Liu Z, Hu H, Yu B, Chen M, Zheng Z, Zhou F (2009) Binary oppositely charged polyelectrolyte brushes for highly selective electroless deposition of bimetallic patterns. Electrochem Commun 11(2):492–495. https://doi.org/10.1016/j.elecom.2008.12.033

    Google Scholar 

  120. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430. https://doi.org/10.1016/j.jpowsour.2009.11.048

    Google Scholar 

  121. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Google Scholar 

  122. Ye J, Baumgaertel AC, Wang YM, Biener J, Biener MM (2015) Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. ACS Nano 15:2194–2202

    Google Scholar 

  123. Zhang H, Yu X, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 6(5):277–281. https://doi.org/10.1038/nnano.2011.38

    Google Scholar 

  124. Liu J, Li N, Goodman MD, Zhang HG, Epstein ES, Huang B, Pan Z, Kim J, Choi JH, Huang X, Liu J, Hsia KJ, Dillon SJ, Braun PV (2015) Mechanically and chemically robust sandwich-structured C@Si@C nanotube array Li-ion battery anodes. ACS Nano 9(2):1985–1994. https://doi.org/10.1021/nn507003z

    Google Scholar 

  125. Pikul JH, Gang ZH, Cho J, Braun PV, King WP (2013) High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat Commun 4:1732. https://doi.org/10.1038/ncomms2747

    Google Scholar 

  126. Liu J, Zhang HG, Wang J, Cho J, Pikul JH, Epstein ES, Huang X, Liu J, King WP, Braun PV (2014) Hydrothermal fabrication of three-dimensional secondary battery anodes. Adv Mater 26(41):7096–7101. https://doi.org/10.1002/adma.201402552

    Google Scholar 

  127. Liu J, Chen X, Kim J, Zheng Q, Ning H, Sun P, Huang X, Liu J, Niu J, Braun PV (2016) High volumetric capacity three-dimensionally sphere-caged secondary battery anodes. Nano Lett 16(7):4501–4508. https://doi.org/10.1021/acs.nanolett.6b01711

    Google Scholar 

  128. Fu K, Wang Y, Yan C, Yao Y, Chen Y, Dai J, Lacey S, Wang Y, Wan J, Li T, Wang Z, Xu Y, Hu L (2016) Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv Mater 28(13):2587–2594. https://doi.org/10.1002/adma.201505391

    Google Scholar 

  129. Sun K, Wei TS, Ahn BY, Seo JY, Dillon SJ, Lewis JA (2013) 3D printing of interdigitated Li-ion microbattery architectures. Adv Mater 25(33):4539–4543. https://doi.org/10.1002/adma.201301036

    Google Scholar 

  130. Shaijumon MM, Perre E, Daffos B, Taberna PL, Tarascon JM, Simon P (2010) Nanoarchitectured 3D cathodes for Li-ion microbatteries. Adv Mater 22(44):4978–4981. https://doi.org/10.1002/adma.201001922

    Google Scholar 

  131. Notten PHL, Roozeboom F, Niessen RAH, Baggetto L (2007) 3-D integrated all-solid-state rechargeable batteries. Adv Mater 19:4564–4567

    Google Scholar 

  132. Long JW, Dunn B, Rolison DR, White HS (2004) Three-dimensional battery architecture. Chem Rev 104(10):4463. https://doi.org/10.1002/chin.200451264

    Google Scholar 

  133. Anikeeva PO, Halpert JE, Bawendi MG, Bulovic V (2007) Electroluminescence from a mixed red–green–blue colloidal quantum dot monolayer. Nano Lett 7(8):2196–2200. https://doi.org/10.1021/nl0703424

    Google Scholar 

  134. Chen O, Zhao J, Chauhan VP, Cui J, Wong C, Harris DK, Wei H, Han HS, Fukumura D, Jain RK, Bawendi MG (2013) Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat Mater 12:445–451

    Google Scholar 

  135. Kim TH, Jun S, Cho KS, Choi BL, Jang E (2013) Bright and stable quantum dots and their applications in full-color displays. MRS Bull 38(9):712–720. https://doi.org/10.1557/mrs.2013.184

    Google Scholar 

  136. Kong YL, Tamargo IA, Kim H, Johnson BN, Gupta MK, Koh TW, Chin HA, Sreingart DA, Rand BP, McAlpine MC (2014) 3D printed quantum dot light-emitting diodes. Nano Lett 14:7017–7023. https://doi.org/10.1021/nl5033292

    Google Scholar 

  137. Qian L, Zheng Y, Xue JG, Holloway PH (2011) Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat Photonics 5(9):543–548. https://doi.org/10.1038/nphoton.2011.171

    Google Scholar 

  138. Lipomi DJ, Tee BC, Vosgueritchian M, Bao Z (2011) Stretchable organic solar cells. Adv Mater 23(15):1771–1775. https://doi.org/10.1002/adma.201004426

    Google Scholar 

  139. Haverinen HM, Myllyla RA, Jabbour GE (2010) Inkjet printed RGB quantum dot-hybrid LED. J Disp Technol 6(3):87–89. https://doi.org/10.1109/JDT.2009.2039019

    Google Scholar 

  140. Haverinen HM, Myllyla RA, Jabbour GE (2009) Inkjet printing of light emitting quantum dots. Appl Phys Lett 94(7):073108. https://doi.org/10.1063/1.3085771

    Google Scholar 

  141. Zhu T, Shanmugasundaram K, Price SC, Ruzyllo J, Zhang F, Xu J, Mohney SE, Zhang Q, Wang AY (2008) Mist fabrication of light emitting diodes with colloidal nanocrystal quantum dots. Appl Phys Lett. https://doi.org/10.1063/1.2834734

    Google Scholar 

  142. Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V (2013) Emergence of colloidal quantum-dot light-emitting technologies. Nat Photonics 7(1):13–23

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial supports from the National Natural Science Foundation of China (51775538), Gansu province science and technology plan (17JR5RA318, 1606RJZA051 and 17YF1FA139), and the West Light Program of CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhilu Liu or Xiaolong Wang.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Ji, Z., Zhang, X. et al. Recent advances in direct ink writing of electronic components and functional devices. Prog Addit Manuf 3, 65–86 (2018). https://doi.org/10.1007/s40964-017-0035-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-017-0035-x

Keywords

Navigation