Skip to main content
Log in

Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Nano/micro silicon particles were achieved by high energy ball milling of silicon mesh powder as a cheap and scalable process and used to make porous silicon by acid etching. Subsequent dispersing of porous silicon with nitrogen-doped carbon nanotubes and graphene oxide followed by filtration and heat treatment gives the composite of unified structures of NCNT@rGO protected porous silicon. The obtained composite was studied as an anode material for Li-ion batteries, and it delivered a high reversible capacity of 862/861 mAh g−1 at 200 mA g−1 with 91% of capacity retention. Along with superior rate capability, the prepared composite exhibited 578 and 451 mAh g−1 discharge capacity at 1,000 and 2,000 mA g−1 after a long 300 cycles. The enhanced electrochemical performance of the composite electrode can be accredited to the highly conductive and tough matrix of NCNT@rGO blend structures, and porosity in silicon effectively controls the silicon expansion and accommodates the required buffer volume during lithiation/de-lithiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Obrovac, L. Christensen, D. B. Le and J. R. Dahn, J. Electrochem. Soc., 154, A849 (2007).

    Article  CAS  Google Scholar 

  2. L. Baggetto, R. A. H. Niessen and P. H. L. Notten, Electrochim. Acta, 54, 5937 (2009).

    Article  CAS  Google Scholar 

  3. M. Ashuri, Q. He and L. L. Shaw, Nanoscale, 8, 74 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. X. Zuo, J. Zhu, P. M. Buschbaum and Y. J. Cheng, Nano Energy, 31, 113 (2017).

    Article  CAS  Google Scholar 

  5. Y. Sun, N. Liu and Y. Cui, Nat. Energy, 1, 16071 (2016).

    Article  CAS  Google Scholar 

  6. U. Kasavajjula, C. Wang and A. J. Appleby, J. Power Sources, 163, 1003 (2007).

    Article  CAS  Google Scholar 

  7. R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta and N. Koratkar, Small, 5, 2236 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. H. Wu and Y. Cui, Nano Today, 7, 414 (2012).

    Article  CAS  Google Scholar 

  9. M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Q. Chen, R. Zhu, S. Liu, D. Wu, H. Fu, J. Zhu and H. He, J. Mater. Chem. A., 6, 6356 (2018).

    Article  CAS  Google Scholar 

  11. V. Nulu, W. S. Kim and K. Y. Sohn, Korean J. Chem. Eng., 36, 1536 (2019).

    Article  CAS  Google Scholar 

  12. P. Gao, X. Huang, Y. Zhao, X. Hu, D. Cen, G. Gao, Z. Bao, Y. Mei, Z. Di and G. Wu, ACS Nano, 12, 11481 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. A. Nulu, V. Nulu and K. Y. Sohn, Sci. Adv. Mater., 12, 337 (2020).

    Article  CAS  Google Scholar 

  14. V. Nulu, W. S. Kim and T. Yu, Korean J. Chem. Eng., 33, 1500 (2016).

    Article  CAS  Google Scholar 

  15. R. Patil, M. Phadatare, N. Blomquist, J. Örtegren, M. Hummelgård, J. Meshram, D. Dubal and H. Olin, ACS Omega, 6, 10, 6600 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Su, S. Liu, H. Wan, A. Dou, K. Liu and Y. Liu, Ionics, 25, 2103 (2019).

    Article  CAS  Google Scholar 

  17. V. A. Nguyen and C. Kuss, J. Electrochem. Soc., 167, 065501 (2020).

    Article  CAS  Google Scholar 

  18. Z. Xu, J. Yang, H. Li, Y. Nuli and J. Wang, J. Mater. Chem. A, 7, 9432 (2019).

    Article  CAS  Google Scholar 

  19. A. Nulu, V. Nulu and K. Y. Sohn, ChemElectroChem., 7, 4055 (2020).

    Article  CAS  Google Scholar 

  20. M. Ashuri, Q. He, Y. Liu, K. Zhang, S. Emani, M. S. Sawicki, J. S. Shamie and L. L. Shaw, Electrochim. Acta, 215, 126 (2016).

    Article  CAS  Google Scholar 

  21. L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang and M. Lei, Sci. Rep., 5, 10908 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. D. L. Schulz, J. Hoey, J. Smith, A. Elangovan, X. Wu, I. Akhatov, S. Payne, J. Moore, P. Boudjouk, L. Pederson, J. Xiao and J. G. Zhang, Electrochem. Solid State Lett., 13, A143 (2010).

    Article  CAS  Google Scholar 

  23. M.-H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, Nano Lett., 9, 3844 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. C. K. Chan, H. Peng and G. Liu, Nat. Nanotechnol., 3, 35 (2008).

    Article  CAS  Google Scholar 

  25. M. D. Fleischauer, J. Li and M. J. Brett, J. Electrochem. Soc., 156, A33 (2009).

    Article  CAS  Google Scholar 

  26. J. Xie, L. Tong, L. Su, Y. Xu, L. Wang and Y. Wang, J. Power Sources, 342, 529 (2017).

    Article  CAS  Google Scholar 

  27. Y. Park, N.-S. Choi, S. Park, S. H. Woo, S. Sim, B. Y. Jang, S. M. Oh, S. Park, J. Cho and K. T. Lee, Adv. Energy Mater., 3, 206 (2013).

    Article  CAS  Google Scholar 

  28. M. Yoshio, T. Tsumura and N. Dimov, J. Power Sources, 146, 14 (2005).

    Article  CAS  Google Scholar 

  29. M. Jana and R. N. Singh, Materialia, 6, 100314 (2019).

    Article  CAS  Google Scholar 

  30. M. Ashuri, Q. He, Y. Liu, S. Emani and L. L. Shaw, Electrochim. Acta, 258, 274 (2017).

    Article  CAS  Google Scholar 

  31. V. Nulu and W. S. Kim, Korean J. Chem. Eng., 32, 1918 (2015).

    Article  CAS  Google Scholar 

  32. A. Nulu, V. Nulu and K. Y. Sohn, Korean J. Chem. Eng., 37, 1795 (2020).

    Article  CAS  Google Scholar 

  33. W. Wang, R. Epur and P. N. Kumta, Electrochem. Commun., 13, 429 (2011).

    Article  CAS  Google Scholar 

  34. K. S. Park, K. M. Min, S. D. Seo, G. H. Lee, H. W. Shim and D. W. Kim, Mater. Res. Bull., 48, 1732 (2013).

    Article  CAS  Google Scholar 

  35. L. Xiao, Y. H. Sehlleier, S. Dobrowolny, F. Mahlendorf, A. Heinzel, C. Schulz and H. Wiggers, Mater. Today: Proceedings, 4, S263 (2017).

    Google Scholar 

  36. A. Gohier, B. Laïk, K. H. Kim, J. L. Maurice, J. P. P. Ramos, C. S. Cojocaru and P. T. Van, Adv. Mater., 24, 19 (2012).

    Article  CAS  Google Scholar 

  37. L. F. Cui, L. Hu, J. W. Choi and Y. Cui, ACS Nano, 4, 3671 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. X. He, W. Zhao, D. Li, P. Cai, Q. Zhuang and Z. Ju. New J. Chem., 43, 18220 (2019).

    Article  CAS  Google Scholar 

  39. Y. Gao, X. Qiu, X. Wang, X. Chen, A. Gu and Z. Yu, Nanotechnology, 31, 155702 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Y. Ouyang, X. Zhu, F. Li, F. Lai, Y. Wu, Y.-E Miao and T. Liu, Appl. Surf. Sci., 475, 211 (2019).

    Article  CAS  Google Scholar 

  41. X. Su, Q. L. Wu, J. C. Li, X. C. Xiao, A. Lott, W. Q. Lu, B. W. Sheldon and J. Wu, Adv. Energy Mater., 4, 1300882 (2014).

    Article  CAS  Google Scholar 

  42. R. Epur, M. Ramanathan, M. K. Datta, D. H. Hong, P. H. Jampani, B. Gattu and P. N. Kumta, Nanoscale, 7, 3504 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. X. J. Feng, J. Yang, Y. T. Bie, J. L. Wang, Y. N. Nuli and W. Lu, Nanoscale, 6, 12532 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. R. Tarcan, O. T. Boer, I. Petrovai, C. Leordean, S. Astilean and I. Botiz, J. Mater. Chem. C., 8, 1198 (2020).

    Article  CAS  Google Scholar 

  45. C. Botas, D. Carriazo, W. Zhang, T. Rojo and G. Singh, Appl. Mater. Interfaces, 8, 28800 (2016).

    Article  CAS  Google Scholar 

  46. J. G. Ren, C. Wang, Q. H. Wu, X. Liu, Y. Yang, L. He and W. Zhang, Nanoscale, 6, 3353 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. L. Xiao, Y. H. Sehlleier, S. Dobrowolny, H. Orthner, F. Mahlendorf, A. Heinzel, C. Schulz and H. Wiggers, ChemElectroChem., 2, 1983 (2015).

    Article  CAS  Google Scholar 

  48. R. Cong, J. Y. Choi, J. B. Song, M. Jo, H. Lee and C. S. Lee, Sci. Rep., 11, 1283 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. C. Weidenthaler, Nanoscale, 3, 792 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. S. M. Paek, E. Yoo and I. Honma, Nano Lett., 9, 72 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. G. Fang, X. Deng, J. Zou and X. Zeng, Int. J. Electrochem. Sci., 14, 1580 (2019).

    Article  CAS  Google Scholar 

  52. G. Fang, X. Deng, J. Zou and X. Zeng, Electrochim. Acta, 295, 498 (2019).

    Article  CAS  Google Scholar 

  53. F. Zhang, G. Zhu, K. Wang, X. Qian, Y. Zhao, W. Luo and J. Yang, J. Mater. Chem. A., 7, 17426 (2019).

    Article  CAS  Google Scholar 

  54. L. Xue, G. Xu, Y. Li, S. Li, K. Fu, Q. Shi and X. Zhang, ACS Appl. Mater. Interfaces, 5, 21 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. W. Choi, H. C. Shin, J. M. Kim, J. Y. Choi and W. S. Yoon, J. Electrochem. Sci. Technol., 11, 1 (2020).

    Article  CAS  Google Scholar 

  56. D. J. Xu, Y. X. Yao, G. Wegner, X. Fang, C. H. Chen and I. Lieberwirth, Solid State Ion., 180, 222 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by grants (NRF-2018R1D1A1B07044026 and NRF-2015R1D1A1A01059983) from the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Yong Sohn.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nulu, A., Nulu, V., Moon, J.S. et al. Unified NCNT@rGO bounded porous silicon composite as an anode material for Lithium-ion batteries. Korean J. Chem. Eng. 38, 1923–1933 (2021). https://doi.org/10.1007/s11814-021-0813-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0813-5

Keywords

Navigation