Skip to main content
Log in

Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries

  • Polymer, Industrial Chemistry
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5–3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0–4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.-H. Tran, S. Harmand, B. Desmet and S. Filangi, Appl. Therm. Eng., 63, 551 (2014).

    Article  Google Scholar 

  2. A. Väyrynen and J. Salminen, J. Chem. Thermodyn., 46, 80 (2012).

    Article  CAS  Google Scholar 

  3. C. Alaoui, IEEE Trans. Veh. Technol., 62, 98 (2012).

    Article  Google Scholar 

  4. B. Deng, H. Wang, W. Ge, X. Li, X. Yan, T. Chen, M. Qu and G. Peng, Electrochim. Acta, 236, 61 (2017).

    Article  CAS  Google Scholar 

  5. Z. Chen, J. Wang, J. Huang, T. Fu, G. Sun, S. Lai, R. Zhou, K. Li and J. Zhao, J. Power Sources, 363, 168 (2017).

    Article  CAS  Google Scholar 

  6. M. Dixit, B. Markovsky, F. Schipper, D. Aurbach and D. T. Major, J. Phys. Chem. C, 121, 22628 (2017).

    Article  CAS  Google Scholar 

  7. J. G. Duan, G. R. Hu, Y. B. Cao, C. P. Tan, C. Wu, K. Du and Z. D. Peng, J. Power Sources, 326, 322 (2016).

    Article  CAS  Google Scholar 

  8. W. Cho, S.-M. Kim, J. H. Song, T. Yim, S.-G. Woo, K.-W. Lee, J.-S. Kim and Y.-J. Kim, J. Power Sources, 282, 45 (2015).

    Article  CAS  Google Scholar 

  9. Y.-S. Lee, W.-K. Shin, A. G. Kannan, S. M. Koo and D.-W. Kim, ACS Appl. Mater. Interfaces, 7, 13944 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. C. Qin, J. Cao, J. Chen, G. Dai, T. Wu, Y. Chen, Y. Tang, A. Li and Y. Chen, Dalton Trans., 45, 9669 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu and Y. Fan, Electrochim. Acta, 196, 101 (2016).

    Article  CAS  Google Scholar 

  12. T. Tao, C. Chen, Y. Yao, B. Liang, S. Lu and Y. Chen, Ceram. Int., 43, 15173 (2017).

    Article  CAS  Google Scholar 

  13. L. Mao, L. Ai, S. Li, Q. Hou, Y. Xie, Y. Liang and J. Xie, AIP Conf. Proc., 1944, 020049 (2018).

    Article  CAS  Google Scholar 

  14. L. Xu, F. Zhou, H. Zhou, J. Kong, Q. Wang and G. Yan, Electrochim. Acta, 289, 120 (2018).

    Article  CAS  Google Scholar 

  15. Q. Ran, H. Zhao, Y. Hu, Q. Shen, W. Liu, J. Liu, X. Shu, M. Zhang, S. Liu and M. Tan, Electrochim. Acta, 289, 82 (2018).

    Article  CAS  Google Scholar 

  16. L. Liang, X. Sun, J. Zhang, L. Hou, J. Sun, Y. Liu, S. Wang and C. Yuan, Adv. Energy Mater., 9, 1802847 (2019).

    Article  CAS  Google Scholar 

  17. L. Liang, W. Zhang, F. Zhao, D. K. Denis, F. u. Zaman, L. Hou and C. Yuan, Adv. Mater. Interfaces, 7, 1901749 (2020).

    Article  CAS  Google Scholar 

  18. G. Wang, C. Chen, Y. Chen, X. Kang, C. Yang, F. Wang, Y. Liu and X. Xiong, Angew. Chem. Int. Ed., 59, 2055 (2020).

    Article  CAS  Google Scholar 

  19. Y. Kim and J. Cho, J. Electrochem. Soc., 154, A495 (2007).

    Article  CAS  Google Scholar 

  20. X. Ma, C. Wang, X. Han and J. Sun, J. Alloys Compd., 453, 352 (2008).

    Article  CAS  Google Scholar 

  21. H. G. Song, J. Y. Kim, K. T. Kim and Y. J. Park, J. Power Sources, 196, 6847 (2011).

    Article  CAS  Google Scholar 

  22. K. C. Kim, J.-P. Jegal, S.-M. Bak, K. C. Roh and K.-B. Kim, Electrochem. Commun., 43, 113 (2014).

    Article  CAS  Google Scholar 

  23. J. Chong, S. Xun, J. Zhang X. Song, H. Xie, V Battaglia and R. Wang, Chem. Eur. J., 20, 7479 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. X. Bian, Q. Fu, X. Bie, P. Yang, H. Qiu, Q. Pang, G. Chen, F. Du and Y. Wei, Electrochim. Acta, 174, 875 (2015).

    Article  CAS  Google Scholar 

  25. L. Liang, X. Sun, C. Wu, L. Hou, J. Sun, X. Zhang and C. Yuan, ACS Appl. Mater. Interfaces, 10, 5498 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. N. I. Ayu, E. Kartini, L. D. Prayogi and M. Faisal, Ionics, 22, 1051 (2016).

    Article  CAS  Google Scholar 

  27. N. Kuwata, N. Iwagami, Y. Tanji, Y. Matsuda and J. Kawamura, J. Electrochem. Soc., 157, A521 (2010).

    Article  CAS  Google Scholar 

  28. Y. Kobayashi, H. Miyashiro, K. Takei, H. Shigemura, M. Tabuchi, H. Kageyama and T. Iwahori, J. Electrochem. Soc., 150, A1577 (2003).

    Article  CAS  Google Scholar 

  29. S.-W. Lee, M.-S. Kim, J. H. Jeong, D.-H. Kim, K. Y. Chung, K. C. Roh and K.-B. Kim, J. Power Sources, 360, 206 (2017).

    Article  CAS  Google Scholar 

  30. Z.-F. Tang, R. Wu, P.-F. Huang, Q.-S. Wang and C.-H. Chen, J. Alloys Compd., 693, 1157 (2017).

    Article  CAS  Google Scholar 

  31. P. Zou, Z. Lin, M. Fan, F. Wang, Y. Liu and X. Xiong, Appl. Surf. Sci., 504, 144506 (2020).

    Article  CAS  Google Scholar 

  32. W. Zhang, L. Liang, F. Zhao, Y. Liu, L. Hou and C. Yuan, Electrochim. Acta, 340, 135871 (2020).

    Article  CAS  Google Scholar 

  33. J. Liu and A. Manthiram, J. Electrochem. Soc., 156, A66 (2009).

    Article  CAS  Google Scholar 

  34. X. Zhu, K. Shang, X. Jiang, X. Ai, H. Yang and Y. Cao, Ceram. Int., 40, 11245 (2014).

    Article  CAS  Google Scholar 

  35. C.-H. Jo, D.-H. Cho, H.-J. Noh, H. Yashiro, Y.-K. Sun and S. T. Myung, Nano Res., 8, 1464 (2015).

    Article  CAS  Google Scholar 

  36. Z. Wang, E. Liu, C. He, C. Shi, J. Li and N. Zhao, J. Power Sources, 236, 25 (2013).

    Article  CAS  Google Scholar 

  37. F. Ding, J. Li, F. Deng, G. Xu, Y. Liu, K. Yang and F. Kang, ACS Appl. Mater. Interfaces, 9, 27936 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. D. Aurbach, M. D. Levi, E. Levi, H. Teller, B. Markovsky, G. Salitra, U. Heider and L. Heider, J. Electrochem. Soc., 145, 3024 (1998).

    Article  CAS  Google Scholar 

  39. T. Späth, D. Becker, N. Schulz, R. Hausbrand and W. Jaegermann, Adv. Mater. Interfaces, 4, 1700567 (2017).

    Article  CAS  Google Scholar 

  40. J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu and H. Li, Energy Storage Mater., 14, 1 (2018).

    Article  Google Scholar 

  41. J. Chen, L. Zhu, D. Jia, X. Jiang, Y. Wu, Q. Hao, X. Xia, Y. Ouyang, L. Peng and W. Tang, Electrochim. Acta, 312, 179 (2019).

    Article  CAS  Google Scholar 

  42. J. I. Hata, M. Hirayama, K. Suzuki, N. Dupré, D. Guyomard and R. Kanno, Batter. Supercaps, 2, 454 (2019).

    Article  CAS  Google Scholar 

  43. W. E. Morgan, J. R. Van Wazer and W. J. Stec, J. Am. Chem. Soc., 95, 751 (1973).

    Article  CAS  Google Scholar 

  44. J. Contour, A. Salesse, M. Froment, M. Garreau, J. Thevenin and D. Warin, J. Microsc. Spect. Elec., 4, 483 (1979).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation (NRF-2018R1C1B6004808 and NRF-2018R1A5A1025594) of the Korean Ministry of Science and ICT. The authors appreciate Ms. Seon Hwa Lee for assisting the Rietveld refinement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun Deog Yoo.

Additional information

Supporting Information

Additional information as noted in the text. This information is available via the Internet at http://www.springer.com/chemistry/journal/11814.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, J.H., Kim, T.W., Kang, HK. et al. Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries. Korean J. Chem. Eng. 38, 1059–1065 (2021). https://doi.org/10.1007/s11814-021-0766-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-021-0766-8

Keywords

Navigation