Skip to main content

Advertisement

Log in

Image cytometry of irregular microplastic particles in a cross-slot microchannel utilizing viscoelastic focusing

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Microplastic particles have recently attracted much attention owing to their potential adverse effects on marine and terrestrial environments. Although several studies have been conducted on this topic, one of the prominent existing challenges is developing analytical methods to precisely characterize isolated microplastics. Specifically, a systematic method that determines both the size and shape of irregular micron-sized particles is required because conventional optical methods provide only two-dimensional images of microplastics and cannot easily handle cases of tilting or aggregation of particles. In this study, we demonstrate that previously developed microfluidic technologies can be successfully applied to measure the size and shape of oblate microparticles utilizing viscoelastic particle focusing. Furthermore, this technique is also applicable for irregular microplastic fragments that are predominantly found in environmental samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Moore, Environ. Res., 108, 131 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. M. A. Browne, P. Crump, S. J. Niven, E. Teuten, A. Tonkin, T. Galloway and R. Thompson, Environ. Sci. Technol., 45, 9175 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. S. M. Ehlers and J. A. Ellrich, Mar. Pollut. Bull., 151, 110845 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. H. Leslie, S. Brandsma, M. Van Velzen and A. Vethaak, Environ. Int., 101, 133 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. T. Lim, G.Y. Jung, J.H. Kim, S. O. Park, J. Park, Y. T. Kim, S. J. Kang, H. Y. Jeong, S. K. Kwak and S. H. Joo, Nat. Commun., 11, 1 (2020).

    Google Scholar 

  6. H. Park, M. J. Oh, P. G. Kim, G. Kim, D. H. Jeong, B. K. Ju, W. S. Lee, H. M. Chung, H. J. Kang and J. H. Kwon, Environ. Sci. Technol., 54, 1503 (2020).

    Article  PubMed  Google Scholar 

  7. M. Scheurer and M. Bigalke, Environ. Sci. Technol., 52, 3591 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. J. S. Choi, Y.-J. Jung, N.-H. Hong, S. H. Hong and J.-W. Park, Mar. Pollut. Bull, 129, 231 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. A. D. Gray and J. E. Weinstein, Environ. Toxicol. Chem., 36, 3074 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. S. L. Wright, R. C. Thompson and T. S. Galloway, Environ. Pollut., 178, 483 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. S. Eo, S. H. Hong, Y. K. Song, J. Lee, J. Lee and W. J. Shim, Environ. Pollut., 238, 894 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. M. Bergmann, L. Gutow and M. Klages, Marine anthropogenic litter, Springer, New York (2015).

    Book  Google Scholar 

  13. H. Bouwmeester, P. C. Hollman and R. J. Peters, Environ. Sci. Technol., 49, 8932 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. L. G. A. Barboza, C. Lopes, P. Oliveira, F. Bessa, V. Otero, B. Henriques, J. Raimundo, M. Caetano, C. Vale and L. Guilhermino, Sci. Total Environ., 717, 134625 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. L. M. Hernandez, E. G. Xu, H. C. Larsson, R. Tahara, V. B. Maisuria and N. Tufenkji, Environ. Sci. Technol., 53, 12300 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. A. Naji, M. Nuri and A.D. Vethaak, Environ. Pollut., 235, 113 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. E. Fries, J. H. Dekiff, J. Willmeyer, M.-T. Nuelle, M. Ebert and D. Remy, Environ. Sci. Process. Impacts, 15, 1949 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. W. J. Shim, S. H. Hong and S. E. Eo, Anal. Methods, 9, 1384 (2017).

    Article  CAS  Google Scholar 

  19. S. Zhang, J. Wang, X. Liu, F. Qu, X. Wang, X. Wang, Y. Li and Y. Sun, Trends Anal. Chem., 111, 62 (2019).

    Article  CAS  Google Scholar 

  20. P. J. Yunker, T. Still, M. A. Lohr and A. Yodh, Nature, 476, 308 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. T. Ding, K. Song, K. Clays and C. H. Tung, Adv. Mater., 21, 1936 (2009).

    Article  CAS  Google Scholar 

  22. A. Wokaun, J. Bergman, J. Heritage, A. Glass, P. Liao and D. Olson, Phys. Rev. B, 24, 849 (1981).

    Article  CAS  Google Scholar 

  23. P. Royer, J. L. Bijeon, J. P. Goudonnet, T. Inagaki and E. T. Arakawa, Surf. Sci., 217(1–2), 384 (1989).

    Article  CAS  Google Scholar 

  24. J. Kim, J. Y. Kim, Y. Kim, S. J. Lee and J.M. Kim, Anal. Chem., 89, 8662 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. J. Li, Y. Wei, Y. Deng, D. Gu, X. Yang, L. Zhang, B. Tu and D. Zhao, J. Mater. Chem., 20, 6460 (2010).

    Article  CAS  Google Scholar 

  26. D. Li and Y. Wang, Plasmonic nanostructures as surfaceenhanced Raman scattering (SERS) substrate for protein biomarker sensing, InTech, London (2017).

    Google Scholar 

  27. A. Mazzoli and O. Favoni, Powder Technol., 225, 65 (2012).

    Article  CAS  Google Scholar 

  28. G. Batchelor, J. Fluid Mech., 46, 813 (1971).

    Article  Google Scholar 

  29. S. Cha, T. Shin, S. S. Lee, W. Shim, G. Lee, S. J. Lee, Y. Kim and J. M. Kim, Anal. Chem., 84, 10471 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Y. B. Bae, H. K. Jang, T. H. Shin, G. Phukan, T. T. Tran, G. Lee, W. R. Hwang and J. M. Kim, Lab Chip, 16, 96 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci., 28, 153 (1998).

    Article  CAS  Google Scholar 

  32. S. J. Ahn, K. H. Ahn and S. J. Lee, Colloid Polym. Sci., 294, 859 (2016).

    Article  CAS  Google Scholar 

  33. G. B. Jeffery, Proc. R. Soc. Lond., 102, 161 (1922).

    Google Scholar 

  34. C. J. Petrie, J. Non-Newton. Fluid Mech., 87, 369 (1999).

    Article  CAS  Google Scholar 

  35. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of polymeric fluids fluid mechanics, Wiley Interscience, New York (1987).

    Google Scholar 

  36. L. Rodd, J. Cooper-White, D. Boger and G. H. McKinley, J. Non-Newton. Fluid Mech., 143, 170 (2007).

    Article  CAS  Google Scholar 

  37. L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White and G. H. McKinley, J. Non-Newton. Fluid Mech., 129, 1 (2005).

    Article  CAS  Google Scholar 

  38. B. Ho and L. Leal, J. Fluid Mech., 76, 783 (1976).

    Article  Google Scholar 

  39. S. Yang, J. Y. Kim, S. J. Lee, S. S. Lee and J. M. Kim, Lab Chip, 11, 266 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. B. Kim and J. M. Kim, Biomicrofluidics, 10, 024111 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. A. M. Leshansky, A. Bransky, N. Korin and U. Dinnar, Phys. Rev. Lett., 98, 234501 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. M. Tehrani, J. Rheol., 40, 1057 (1996).

    Article  CAS  Google Scholar 

  43. M. Han, C. Kim, M. Kim and S. Lee, J. Rheol., 43, 1157 (1999).

    Article  CAS  Google Scholar 

  44. D. Leighton and A. Acrivos, J. Fluid Mech., 181, 415 (1987).

    Article  CAS  Google Scholar 

  45. R. Dylla-Spears, J. E. Townsend, L. Jen-Jacobson, L. L. Sohn and S. J. Muller, Lab Chip, 10, 1543 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. W. R. Schowalter, A. Luikov and W. Minkowycz, Progress in heat and mass transfer: Selected papers of the 1970 international seminar, Elsevier, New York (2013).

    Google Scholar 

  47. E. Guazzelli and J. F. Morris, A physical introduction to suspension dynamics, Cambridge University Press, New York (2011).

    Book  Google Scholar 

  48. A. Jahnke, H. P. H. Arp, B. I. Escher, B. Gewert, E. Gorokhova, D. Kühnel, M. Ogonowski, A. Potthoff, C. Rummel and M. Schmitt-Jansen, Environ. Sci. Technol. Lett., 4, 85 (2017).

    Article  CAS  Google Scholar 

  49. Y. Kim, K. H. Ahn and S. J. Lee, J. Membr. Sci., 534, 25 (2017).

    Article  CAS  Google Scholar 

  50. I. Kursun, Min. Proc. Ext. Met. Rev., 30, 346 (2009).

    Article  CAS  Google Scholar 

  51. C. Mora and A. Kwan, Ceme. Concr. Res., 30, 351 (2000).

    Article  CAS  Google Scholar 

  52. W. C. Krumbein, J. Sediment. Res., 11, 64 (1941).

    Article  CAS  Google Scholar 

  53. E. Olson, J. GXP Compliance, 15, 85 (2011).

    Google Scholar 

  54. D. R. Gossett, T. Henry, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark and D. Di Carlo, Proc. Natl. Acad. Sci. U.S.A., 109, 7630 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Program through the National Research Foundation of Korea (NRF) (nos. NRF-2019R1F1A1060512, NRF-2018R1A5A1024127, and 2020R1A2 C2009244).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seong Jae Lee, Jung-Hwan Kwon or Ju Min Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, B., Lee, H., Lee, S.J. et al. Image cytometry of irregular microplastic particles in a cross-slot microchannel utilizing viscoelastic focusing. Korean J. Chem. Eng. 37, 2136–2142 (2020). https://doi.org/10.1007/s11814-020-0670-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0670-7

Keywords

Navigation