Skip to main content
Log in

Microfluidic focusing of microparticles utilizing negative magnetophoresis and oscillatory flow

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Focusing of biological particles has important applications in the fields of biology, medicine, chemistry and environment. The emergence of microfluidic technology has brought new opportunities for the manipulation of biological particles. However, existing methods generally produce a relatively large shear stress or thermal effect on biological particles, which may cause negative biological effects during manipulation, especially for sensitive bioparticles. Herein, we propose a novel strategy for microfluidic focusing of microparticles based on negative magnetophoresis and oscillatory flow. A simple and efficient simulation model is first developed to calculate the motion of particles under magnetic field and fluid field. The non-monotonic size dependence of particle focusing is then revealed and elaborately analyzed. Furthermore, the effects of oscillatory flow field and magnetic field on particle focusing are quantitatively investigated and the particle size range for effective focusing in our proposed chip is provided. The proposed strategy of microfluidic focusing can guide the real applications such as enrichment and separation of sensitive biological particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alnaimat F, Dagher S, Mathew B, Hilal-Alnqbi A, Khashan S (2018) Microfluidics based magnetophoresis: a review. Chem Rec 18(11):1596–1612

    Article  Google Scholar 

  • Asghari M, Cao X, Mateescu B, van Leeuwen D, Aslan M, Stavrakis S et al (2020) Oscillatory viscoelastic microfluidics for efficient focusing and separation of nanoscale species. ACS Nano 14(1):422–433

    Article  Google Scholar 

  • Boissenot T, Bordat A, Fattal E, Tsapis N (2016) Ultrasound-triggered drug delivery for cancer treatment using drug delivery systems: from theoretical considerations to practical applications. Control Release Soc 241:144–163

    Article  Google Scholar 

  • Cao Q, Fan Q, Chen Q, Liu C, Han X, Li L (2019) Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Mater Horiz 7(3):638–666

    Article  Google Scholar 

  • D’Avino G, Greco F, Maffettone P (2017) Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu Rev Fluid Mech 49:341–360

    Article  MathSciNet  MATH  Google Scholar 

  • Dutz S, Hergt R (2013) Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperth 29(8):790–800

    Article  Google Scholar 

  • Gantos P, Pfeffer R, Weinbaum S (1980) A strong interaction theory for the crepping motion of a sphere between plane parallel boundaries. 2. Parellel motion. J Fluid Mech 99:755–783

    Article  MATH  Google Scholar 

  • Guo F, Mao Z, Chen Y, Xie Z, Plata J, Li P et al (2016) Three-dimensional manipulation of single cells using surface acoustic waves. Proc Natl Acad Sci USA 113(6):1522–1527

    Article  Google Scholar 

  • Hejazian M, Nguyen N-t (2015) Negative magnetophoresis in diluted ferrofluid flow. Lab Chip 15(14):2988–3005

    Article  Google Scholar 

  • Hosokawa M, Kenmotsu H, Koh Y, Yoshino T, Yoshikawa T, Naito T et al (2013) Size-based isolation of circulating tumor cells in lung cancer patients using a microcavity array system. PLoS ONE 8(6):e67466

    Article  Google Scholar 

  • Huang D, Xiang N (2021) Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. Lab Chip 21(7):1409–1417

    Article  Google Scholar 

  • Jain KK (2001) Biochips for gene spotting. Science 294(5542):621–623

    Article  Google Scholar 

  • Jiang D, Ni C, Tang W, Huang D, Xiang N (2021) Inertial microfluidics in contraction-expansion microchannels: a review. Biomicrofluidics 15(4):041501

    Article  Google Scholar 

  • Kang H, Kim J, Cho H, Han K-h (2019) Evaluation of positive and negative methods for isolation of circulating tumor cells by lateral magnetophoresis. Micromachines 10(6):386

    Article  Google Scholar 

  • Karabacak N, Spuhler P, Fachin F, Lim E, Pai V, Ozkumur E et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9(3):694–710

    Article  Google Scholar 

  • Karimi A, Yazdi S, Ardekani AM (2013) Hydrodynamic mechanisms of cell and particle trapping in microfluidics. Biomicrofluidics 7(2):021501

    Article  Google Scholar 

  • Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, Wrba F et al (2011) Detection of EpCAM positive and negative circulating tumor cells in metastatic breast cancer patients. Acta Oncol 50(5):700–710

    Article  Google Scholar 

  • Liang L, Zhu J, Xuan X (2011) Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows. Biomicrofluidics 5(3):034110

    Article  Google Scholar 

  • Liang L, Zhang C, Xuan X (2013) Enhanced separation of magnetic and diamagnetic particles in a dilute ferrofluid. Appl Phys Lett 102(23):234101

    Article  Google Scholar 

  • Liu L, Xu H, Xiu H, Xiang N, Ni Z (2019) Precise manipulation of longitudinal dynamic self-assembly of particles in the viscoelastic fluid within a straight microchannel. arXiv

  • Liu Y, Zhao W, Cheng R, Meghan L, Mariadelmar Z-V, Lohitash K et al (2020) Label-free ferrohydrodynamic separation of exosome-like nanoparticles. Lab Chip 20(17):3187–3201

    Article  Google Scholar 

  • Liu Y, Zhao W, Rui C, Bryanan H, Jonathanr M, Jamie H et al (2021a) Fundamentals of integrated ferrohydrodynamic cell separation in circulating tumor cell isolation. Lab Chip 21(9):1706–1723

    Article  Google Scholar 

  • Liu Y, Zhao W, Cheng R, Hodgson J, Egan M, Pope C et al (2021b) Simultaneous biochemical and functional phenotyping of single circulating tumor cells using ultrahigh throughput and recovery microfluidic devices. Lab Chip 21(14):3583–3597

    Article  Google Scholar 

  • Liu Y, Zhao W, Cheng R, Puig A, Hodgson J, Egan M et al (2021c) Label-free inertial-ferrohydrodynamic cell separation with high throughput and resolution. Lab Chip 21(14):2738–2750

    Article  Google Scholar 

  • Meng L, Deng Z, Niu L, Li F, Yan F, Wu J et al (2015) A disposable microfluidic device for controlled drug release from thermal-sensitive liposomes by high intensity focused ultrasound. Theranostics 5(11):1203–1213

    Article  Google Scholar 

  • Moon H-s, Kwon K, Kim S-i, Han H, Sohn J, Lee S et al (2011) Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 11(6):1118–1125

    Article  Google Scholar 

  • Munaz A, Shiddiky M, Nguyen N-t (2018) Recent advances and current challenges in magnetophoresis based micro magnetofluidics. Biomicrofluidics 12(3):031501

    Article  Google Scholar 

  • Rmutlu B, Fedd J, Toner M (2018) Oscillatory inertial focusing in infinite microchannels. Proc Natl Acad Sci USA 115(30):7682–7687

    Article  Google Scholar 

  • Whitesides G (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    Article  Google Scholar 

  • Xiang N, Wang S, Ni Z (2021) Secondary-flow-aided single-train elastic-inertial focusing in low elasticity viscoelastic fluids. Electrophoresis, pp 1–8

  • Xue C, Sun Z, Li Y, Chen J, Liu B, Qin K (2020) Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis. Electrophoresis 41(10–11):909–916

    Article  Google Scholar 

  • Yan S, Zhang J, Yuan Y, Lovrecz G, Alici G, Du H et al (2015) A hybrid dielectrophoretic and hydrophoretic microchip for particle sorting using integrated prefocusing and sorting steps. Electrophoresis 36(2):284–291

    Article  Google Scholar 

  • Ying J, Moore L, Schneider T, Williams P, Chalmers J, Farag S et al (2007) Negative selection of hematopoietic progenitor cells by continuous magnetophoresis. Exp Hematol 35(4):662–672

    Article  Google Scholar 

  • Zeng J, Chen C, Vedantam P, Tzeng T-R, Xuan X (2013) Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluid Nanofluid 15(1):49–55

    Article  Google Scholar 

  • Zeng L, Chen X, Du J, Yu Z, Zhang R, Zhang Y, Yang H et al (2021) Label-free separation of nanoscale particles by an ultrahigh gradient magnetic field in a microfluidic device. Nanoscale 13(7):4029–4037

    Article  Google Scholar 

  • Zhang J, Yan S, Yuan D, Zhao Q, Tansay H, Nguyen N-T et al (2016) A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles. Lab Chip 16(20):3947–3956

    Article  Google Scholar 

  • Zhang X, Zhu Z, Xiang N, Long F, Ni Z (2018) Automated microfluidic instrument for label-free and high-throughput cell separation. Anal Chem 90(6):4212–4220

    Article  Google Scholar 

  • Zhao W, Cheng R, Miller J, Mao L (2016) Label-free microfluidic manipulation of particles and cells in magnetic liquids. Adv Func Mater 26(22):3916–3932

    Article  Google Scholar 

  • Zhou R, Wang C (2016a) Multiphase ferrofluid flows for micro-particle focusing and separation. Biomicrofluidics 10(3):034101

    Article  MathSciNet  Google Scholar 

  • Zhou R, Wang C (2016b) Microfluidic separation of magnetic particles with soft magnetic microstructures. Microfluid Nanofluid 20(3):48

    Article  MathSciNet  Google Scholar 

  • Zhou R, Yang W, Bai F, Awerner J, Shi H, Ma Y et al (2016) Fabrication and integration of microscale permanent magnets for particle separation in microfluidics. Microfluid Nanofluid 20(7):1–2

    Article  Google Scholar 

  • Zhu T, Cheng R, Mao L (2011a) Focusing microparticles in a microfluidic channel with ferrofluids. Microfluid Nanofluid 11(6):695–701

    Article  Google Scholar 

  • Zhu T, Darcyj L, Marka G, Mao L (2011b) Analytical model of microfluidic transport of non-magnetic particles in ferrofluids under the influence of a permanent magnet. Microfluid Nanofluid 10(6):1233–1245

    Article  Google Scholar 

  • Zhu J, Liang L, Xuan X (2012) On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluid Nanofluid 12(1–4):65–73

    Article  Google Scholar 

  • Zhu G, Hejiazan M, Huang X, Nguyen N-t (2014) Magnetophoresis of diamagnetic microparticles in a weak magnetic field. Lab Chip 14(24):4609–4615

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (11802054), the Fundamental Research Funds for the Central Universities in China (DUT21YG127, DUT20YG113), and the China Postdoctoral Science Foundation (2019M651106).

Author information

Authors and Affiliations

Authors

Contributions

C.D. Xue: Conceptualization, Funding acquisition, Writing—Review & Editing; J.M. Zhao: Investigation, Writing—Original Draft; Z.P. Sun: Data Curation; J.T. Na: Formal analysis; Y.J. Li: Writing—Review & Editing; K. R. Qin: Supervision, Writing—Review & Editing.

Corresponding authors

Correspondence to Chun-Dong Xue or Kai-Rong Qin.

Ethics declarations

Conflict of interest statement

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, CD., Zhao, JM., Sun, ZP. et al. Microfluidic focusing of microparticles utilizing negative magnetophoresis and oscillatory flow. Microfluid Nanofluid 25, 97 (2021). https://doi.org/10.1007/s10404-021-02497-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02497-w

Keywords

Navigation