Skip to main content
Log in

Film squeezing process for generating oblate spheroidal particles with high yield and uniform sizes

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Particle shape is one of the most important parameters that can influence the characteristics and properties of dispersion systems. In this study, we have developed a straightforward and facile method to generate oblate spheroidal particles via a film squeezing process. Representative methods so far developed to prepare oblate spheroidal particles, such as film blowing and mechanical stretching based on a biaxial process, have serious problems, including being difficult methods to adopt, very low yield, and non-uniform particle size. Our film squeezing process involves simply squeezing a sandwiched array comprised of an arbitrarily shaped film with embedded polymer spheres between two identical circular elastomeric sheets, on the basis that homogeneous deformation is possible in the mid-plane of simple squeeze flow. This method utilizes a unified uniaxial process for producing both prolate and oblate spheroidal particles. The advantages of the method are easier access, much higher yield, and more uniform sizes and shapes than previously reported methods. This process can be helpful for the fundamental studies utilizing oblate spheroidal particles with controlled geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Subramanian G, Manoharan VN, Thorne JD, Pine DJ (1999) Ordered macroporous materials by colloidal assembly: a possible route to photonic bandgap materials. Adv Mater 11:1261–1265

    Article  CAS  Google Scholar 

  2. Lee KJ, Yoon J, Lahann J (2011) Recent advances with anisotropic particles. Curr Opin Colloid Interface Sci 16:195–202

    Article  CAS  Google Scholar 

  3. Champion JA, Katare YK, Mitragotri S (2007) Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 121:3–9

    Article  CAS  Google Scholar 

  4. Anderson JA, Shive MS (2012) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 64:72–82

    Article  Google Scholar 

  5. Glotzer SC, Solomon MJ (2007) Anisotropy of building blocks and their assembly into complex structures. Nat Mater 6:557–562

    Article  Google Scholar 

  6. Cui J, Wang Y, Postma A, Hao J, Hosta-Rigau L, Caruso F (2010) Monodisperse polymer capsules: tailoring size, shell thickness, and hydrophobic cargo loading via emulsion templating. Adv Funct Mater 20:1625–1631

    Article  CAS  Google Scholar 

  7. Masaeli M, Sollier E, Amini H, Mao W, Camacho K, Doshi N, Mitragotri S, Alexeev A, Carlo DD (2012) Continuous inertial focusing and separation of particles by shape. Phys Rev X 2:031017

    Google Scholar 

  8. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM (2013) DNA-based highly tunable particle focuser. Nat Commun 4:2567

    Google Scholar 

  9. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring strains from dried liquid drops. Nature 389:827–829

    Article  CAS  Google Scholar 

  10. Koos E, Willenbacher N (2011) Capillary forces in suspension rheology. Science 331:897–900

    Article  CAS  Google Scholar 

  11. Bradford EB, Vanderhoff JW (1955) Electron microscopy of monodisperse latexes. J Appl Phys 26:864–871

    Article  CAS  Google Scholar 

  12. Goodwin JW, Hearn J, Ho CC, Ottewill RH (1973) The preparation and characterisation of polymer lattices formed in the absence of surface active agents. Brit Polym J 5:347–362

    Article  CAS  Google Scholar 

  13. Ugelstad J, Mork PC, Kaggerud KH, Ellinger T, Berge A (1980) Swelling of oligomer-polymer particles. new methods of preparation. Adv Colloid Interf Sci 13:101–140

    Article  CAS  Google Scholar 

  14. Mao W, Alexeev A (2014) Motion of spheroid particles in shear flow with inertia. J Fluid Mech 749:145–166

    Article  CAS  Google Scholar 

  15. Doshi N, Orje JN, Mollins B, Smith JW, Mitragotri S, Ruggeri ZM (2012) Platelet mimetic particles for targeting thrombi in flowing blood. Adv Mater 24:3864–3869

    Article  CAS  Google Scholar 

  16. Yunker PJ, Still T, Lohr MW, Yodh AG (2011) Suppression of the coffee-ring effects by shape-dependent capillary interactions. Nature 476:308–311

    Article  CAS  Google Scholar 

  17. Mitragotri S, Lahann J (2009) Physical approaches to biomaterial design. Nat Mater 8:15–23

    Article  CAS  Google Scholar 

  18. Mathaes R, Winter G, Besheer A, Engert J (2015) Non-spherical micro- and nanoparticles: fabrication, characterization and drug delivery applications. Expert Opin Drug Deliv 12:481–492

    Article  CAS  Google Scholar 

  19. Nagy M, Keller A (1989) Ellipsoidal polymer particles with predesigned axial ratio. Polym Commun 30:130–132

    CAS  Google Scholar 

  20. Ho CC, Keller A, Odell JA, Ottewill RH (1993) Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 271:469–479

    Article  CAS  Google Scholar 

  21. Keville KM, Franses EI, Caruthers JM (1991) Preparation and characterization of monodisperse polymer microspheroids. J Colloid Interf Sci 144:103–126

    Article  CAS  Google Scholar 

  22. Ding T, Liu Z-F, Song K, Clays K, Tung C-H (2009) Photonic crystals of oblate spheroids by blown film extrusion of prefabricated colloidal crystals. Langmuir 25:10218–10222

    Article  CAS  Google Scholar 

  23. Champion JA, Katare YK, Mitragotri S (2007) Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 104:11901–11904

    Article  CAS  Google Scholar 

  24. Hu Y, Ge J, Zhang T, Yin Y (2008) A blown film process to disk-shaped polymer ellipsoids. Adv Mater 20:4599–4602

    Article  CAS  Google Scholar 

  25. Shin H, Kim C (2012) Preparation of spheroidal and ellipsoidal particles from spherical polymer particles by extension of polymer film. Colloid Polym Sci 290:1309–1315

    Article  CAS  Google Scholar 

  26. Florea D, Wyss HM (2014) Towards the self-assembly of anisotropic colloids: monodisperse oblate ellipsoids. J Colloid Interface Sci 416:30–37

    Article  CAS  Google Scholar 

  27. Cohen AP, Janai E, Mogilko E, Schofield AB, Sloutskin E (2011) Fluid suspensions of colloidal ellipsoids: direct structural measurements. Phys Rev Lett 107:238301

    Article  CAS  Google Scholar 

  28. Adams MJ, Edmondson B, Caughey DG, Yahya R (1994) An experimental and theoretical study of the squeeze-film deformation and flow of elastoplastic fluids. J Non-Newt Fluid Mech 51:61–78

    Article  CAS  Google Scholar 

  29. Wilson SDR (1993) Squeezing flow of a Bingham material. J Non-Newt Fluid Mech 47:211–219

    Article  CAS  Google Scholar 

  30. Billington EW, Tate A (1981) The physics of deformation and flow. McGraw-Hill, New York, pp. 187–192

    Google Scholar 

  31. Keville-Polizopoulos KM (1988) Preparations, characterization, and flow behavior of dispersions of monodisperse microspheroids. Ph. D. Thesis. Purdue University, West Lafayette, pp. 194–196

    Google Scholar 

  32. Paine AJ, Luymes W, McNulty J (1990) Dispersion polymerization of styrene in polar solvents. 6. influence of reaction parameters on particle size and molecular weight in poly(N-vinylpyrrolidone)-stabilized reactions. Macromolecules 23:3104–3109

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Research Foundation of Korea (NRF) under the Ministry of Education, Science and Technology (MEST) for the financial support (Grant Nos. 2011-0011180 and 2013R1A2A2A07067387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Jae Lee.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 1525 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, S.J., Ahn, K.H. & Lee, S.J. Film squeezing process for generating oblate spheroidal particles with high yield and uniform sizes. Colloid Polym Sci 294, 859–867 (2016). https://doi.org/10.1007/s00396-016-3838-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-016-3838-2

Keywords

Navigation