Skip to main content
Log in

Kinetic study of activation and deactivation of adsorbed cellulase during enzymatic conversion of alkaline peroxide oxidation-pretreated corn cob to sugar

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Corn cob lignocellulosic biomass is one of the useful precursors for the alternative production of fuels and chemicals. Understanding the kinetics of enzymatic conversion of corn cob through kinetic models could provide indepth knowledge and increase the predictive ability for process design and optimization. In this study, models based on the semi-mechanistic rate equations, first-order decay exponential function of time for adsorbed enzymes, structural and diffusion coefficient for adsorption were used to estimate kinetic parameters for the enzymatic conversion of alkaline peroxide oxidation (APO) pretreated corn cob to sugar. Fitting a first-order inactivation model of adsorbed cellulases to account for experimental hydrolysis data, the apparent hydrolysis rate constant (k2=29.51 min−1), the inactivation rate constant (k3=0.269 min−1), and reactivation rate constant (k4=0.0048 min−1) were estimated. Regressed values of apparent maximum rate, Vmax, app, for adsorbed enzymes reduced appreciably with time to more than 98% at 96 h. The diffusion limit model showed that the diffusion resistance increased with increasing enzyme concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ao :

inactivation extent

Eo :

initial enzyme concentration [g·L−1]

[E]total :

total enzyme concentration [mmole·L−1]

Vo :

initial hydrolysis rate [mmole·L−1min−1]

Zo :

residual enzyme activity

Vmax :

maximum initial hydrolysis rate [mmole·L−1min−1]

Vmax,app :

apparent maximum initial hydrolysis rate [mmole·L−1min−1]

V r :

real hydrolysis rate [mmole·L−1min−1]

t1/2 :

half-life [min]

P:

product concentration [g·L−1]

Pσ :

products that diffused at equilibrium [g·L−1]

S:

substrate concentration [g·L−1]

k:

diffusion coefficient for adsorption [g·L−1·h−1]

km :

half-maximum initial hydrolysis rate [g·L−1]

k2 :

apparent hydrolysis rate constant [min−1]

k3 :

inactivation rate constant [min−1]

k4 :

reactivation rate constant [min−1]

n:

structural diffusion resistance constant

References

  1. G. Y. Yew, S. Y. Lee, P. L. Show, Y. Tao, C. L. Law, T. T. C. Nguyen and J. S. Chang, Bioresour. Technol. Rep., 7, 100227 (2019).

    Article  Google Scholar 

  2. Y. Liu, W. Han, X. Xu, L. Chen, J. Tang and P. Hou, Biochem. Eng. J., 156, 107528 (2020).

    Article  CAS  Google Scholar 

  3. S. Takkellapati, T. Li and M. A. Gonzalez, Clean Technol. Environ. Policy, 20, 1615 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. P. K. Dikshit, H.-B. Jun and B. S. Kim, J. Chem. Eng., 37, 387 (2020).

    CAS  Google Scholar 

  5. S. Liu and Q. Wang, Cellulose Chem. Technol., 50, 803 (2016).

    CAS  Google Scholar 

  6. A. T. Adeleye, H. Louis, O.U. Akakuru, I. Joseph, O. C. Enudi and D. P. Michael, AIMS Energy, 7, 165 (2019).

    Article  CAS  Google Scholar 

  7. M. M. H. Coelho, N.W.S. Morais, E.L. Pereira, R. C. Leitão and A. B. dos Santos, Biochem. Eng. J., 156, 107502 (2020).

    Article  CAS  Google Scholar 

  8. A. I. Adeogun, B.E. Agboola, M.A. Idowu and T.A. Shittu, J. Bioresour. Bioprod., 4, 149 (2019).

    CAS  Google Scholar 

  9. A.O. Ayeni and M.O. Daramola, J. Environ. Chem. Eng., 5, 1771 (2017).

    Article  CAS  Google Scholar 

  10. Y. Zhuoliang and R.E. Berson, Bioresour. Technol., 102, 11194 (2011).

    Article  CAS  Google Scholar 

  11. E.I. Makarova, V.V. Budaeva, A. A. Kukhlenko and S. E. Orlov, 3 Biotech, 7, 317 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. F. Carrillo, M.J. Lis, X. Colom, M. López-Mesas and J. Valldeperas, Process Biochem., 40, 3360 (2005).

    Article  CAS  Google Scholar 

  13. W. Lin, S. Xing, Y. Jin, X. Lu, C. Huang and Q. Yong, Bioresour. Technol., 306, 123163 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. N.M. Jamil, WIT Trans. Ecol. Environ., 186, 499 (2014).

    Article  Google Scholar 

  15. M.L. Carvalho, R. Sousa Jr., U.F. Rodríguez-Zúñiga C.A.G. Suarez, D.S. Rodrigues, R.C. Giordano and R.L.C. Giordano, Braz. J. Chem. Eng., 30, 437 (2013).

    Article  CAS  Google Scholar 

  16. R.S. Ghadge, A.W. Patwardhan, S.B. Sawant and J.B. Joshi, Chem. Eng. Sci., 60, 1067 (2005).

    Article  CAS  Google Scholar 

  17. A.O. Converse, R. Matsuno, M. Tanaka and M. Taniguchi, Biotechnol. Bioeng., 32, 38 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Zhang, J.-L. Xu, H.-J. Xu, Z.-H. Yuan and Y. Guo, Bioresour. Technol., 101, 8261 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. C. Huang, W. Lin, C. Lai, X. Li, Y. Jin and Q. Yong, Bioresour. Technol., 285, 121355 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. J. Jalak and P. Valjamae, Biotechnol. Bioeng., 106, 871 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. S. Peri, S. Karra, Y.Y. Lee and M.N. Karim, Biotechnol. Prog., 23, 626 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Q. Gan, S.J. Allen and G. Taylor, Process Biochem., 38, 1003 (2003).

    Article  CAS  Google Scholar 

  23. J.A. Asenjo, Biotechnol. Bioeng., 25, 3185 (1983).

    Article  CAS  PubMed  Google Scholar 

  24. J. Hong, X.H. Ye and Y. H. P. Zhang, Langmuir, 23, 12535 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. G.E. Briggs and J.B. Haldane, Biochem. J., 19, 338 (1925).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. J. Chrastil and J.T. Wilson, Int. J. Biochem., 14, 1 (1982).

    Article  CAS  PubMed  Google Scholar 

  27. J. Chrastil, Int. J. Biochem., 20, 683 (1988).

    Article  CAS  PubMed  Google Scholar 

  28. J.M. Gould, Biotechnol. Bioeng., 26, 46 (1984).

    Article  CAS  PubMed  Google Scholar 

  29. A.O. Ayeni, J. A. Omoleye, S. Mudliar, F.K. Hymore and R.A. Pandey, Korean J. Chem. Eng., 31, 1180 (2014).

    Article  CAS  Google Scholar 

  30. G.L. Miller, Anal. Chem., 31, 426 (1959).

    Article  CAS  Google Scholar 

  31. A.O. Ayeni, J.A. Omoleye, F.K. Hymore and R.A. Pandey, Braz. J. Chem. Eng., 33, 33 (2016).

    Article  CAS  Google Scholar 

  32. C.G. Yoo, C. W. Lee and T.H. Kim, Biomass Bioenergy, 35, 4901 (2011).

    Article  CAS  Google Scholar 

  33. M.A. Lemos, J.A. Teixeira, M.R.M. Domingues, M. Mota and F.M. Gama, Microb. Technol., 32, 35 (2003).

    Article  CAS  Google Scholar 

  34. D. Lloyd, J. Mol. Evolut., 45, 370 (1997).

    Article  Google Scholar 

  35. J. Bian, F. Peng, X.-P. Peng, P. Peng, F. Xu and R.-C. Sun, BioResources, 7, 4626 (2012).

    Article  CAS  Google Scholar 

  36. J.M. Berg, J.L. Tymoczko and L. Stryer, Biochemistry, W.H. Freeman Publications, New York (2006).

    Google Scholar 

  37. J. Crank, The mathematics of diffusion, Clarendon Press, Oxford (1975).

    Google Scholar 

  38. A.O. Ayeni, M.O. Daramola, A. Awoyomi, F.B. Elehinafe, A. Ogunbiyi, P.T. Sekoai and J.A. Folayan, Cogent Eng., 5, 1509665 (2018).

    Article  Google Scholar 

  39. I. Spiridon, C. Teacã and R. Bodîrlău, BioResources, 6, 400 (2011).

    Article  CAS  Google Scholar 

  40. J.S. Gratzl, Papier, 46, 1 (1992).

    CAS  Google Scholar 

  41. P. Valjamae, V. Sild, G. Pettersson and G. Johansson, Eur. J. Biochem., 253, 469 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. M. Marasovi, T. Marasovi and M. Miloš, J. Chem., 6560983, 1 (2017).

    Article  CAS  Google Scholar 

  43. G. N. Wilkinson, Biochem. J., 80, 324 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. M.T. Holtzapple, H.S. Caram and A.E. Humphrey, Biotechnol. Bioeng., 26, 775 (1984).

    Article  CAS  PubMed  Google Scholar 

  45. R. Matsuno, M. Taniguchi, M. Tanaka and T. Kamikubo, Enz. Eng., 7, 158 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustine Omoniyi Ayeni.

Electronic supplementary material

11814_2020_667_MOESM1_ESM.pdf

Kinetic study of activation and deactivation of adsorbed cellulase during enzymatic conversion of alkaline peroxide oxidation-pretreated corn cob to sugar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayeni, A.O., Agboola, O., Daramola, M.O. et al. Kinetic study of activation and deactivation of adsorbed cellulase during enzymatic conversion of alkaline peroxide oxidation-pretreated corn cob to sugar. Korean J. Chem. Eng. 38, 81–89 (2021). https://doi.org/10.1007/s11814-020-0667-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0667-2

Keywords

Navigation