Skip to main content
Log in

Fischer-Tropsch Synthesis on Fe-Co-Pt/γ-Al2O3 catalyst: A mass transfer, kinetic and mechanistic study

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Mass transfer limitations and kinetics studies were performed for Fischer-Tropsch Synthesis over spherical 10wt% Fe-10wt% Co-0.5wt% Pt/79.5wt% γ-Al2O3 catalyst in a fixed bed reactor. The external mass transfer limitation was checked by studying the effect of gas hourly space velocity (GHSV) and feed flow rate (at constant GHSV) on CO conversion. Theoretical and practical methods were applied to assess the effect of catalyst pellet size on the internal mass transfer limitation. The results indicated there is external diffusion limitation for GHSV lower than 4,200 h−1. Both the theoretical and practical methods showed that the reaction is free of internal diffusion limitation with average particle sizes of 0.21 and 0.42 mm due to Thiele modulus smaller than 0.4, denoting that the rate of reaction is kinetically controlled. The kinetics results demonstrated the combined enol and carbide mechanism-based model was able to provide a good fit for the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bCO :

adsorption coefficient of CO

\({{\rm{b}}_{{H_2}}}\) :

adsorption coefficient of H2

C n−1As :

concentration at the external surface of the catalyst pellet

C WP :

Weisz-Prater criterion

C V :

concentration of free active sites

DA :

bulk diffusivity [m2·min−1]

Deff :

effective diffusivity [m2·s−1]

D K :

Knudsen diffusivity [cm2·s−1]

dP :

pellet diameter [mm]

Ea :

activation energy [kJ·mol−1]

ER:

Eley-Rideal

FTS:

Fischer-Tropsch Synthesis

F 0CO :

molar flow rate of CO at the inlet [mol·min−1]

GHSV:

gas hourly space velocity [h−1]

HMTA:

hexamethylene tetramine

IUPAC:

international union of pure and applied chemistry

i* :

adsorbed i species on the vacant active site

k:

reaction rate constant [mol·g−1·min−1]

k ads,CO :

rate constant of adsorption of CO

\({{\rm{k}}_{ads,{H_2}}}\) :

rate constant of adsorption of H2

k des,CO :

rate constant of desorption of CO

\({{\rm{k}}_{des,\,{H_2}}}\) :

rate constant of desorption of H2

LHHW:

Langmuir-Hinshelwood-Hougen-Watson

LP :

shape factor

MARR:

mean absolute relative residual

n:

reaction order

N exp :

number of experiments

PCO :

CO partial pressure [bar]

\({{\rm{P}}_{{H_2}}}\) :

hydrogen partial pressure [bar]

R:

universal gas constant 8.314 [J·mol−1·K−1]

R2 :

coefficient of determination

−rCO :

consumption rate of CO [mol·g −1cat ·min−1]

rintrinsic :

reaction rate in the absence of mass transfer limitations

robserved :

observed reaction rate

RP :

pellet radius [mm]

RDS:

rate determining step

Wcat :

catalystweight [g]

X CO :

CO conversion

ΔH:

heat of adsorption [kJ·mol−1]

ε :

pellet porosity

ϕ :

thiele modulus

η :

effectiveness factor

τ :

tortuosity

ψ CO :

surface occupied with CO

ψ H :

surface occupied with H

ε COH :

surface occupied with COH

σ :

mean of values of experimental rate

*:

unoccupied active sites

Exp:

experimental value

mod:

predicted value

References

  1. J. H. den Otter, S. R. Nijveld and K. P. de Jong, ACS Catal., 6(3), 1616 (2016).

    Article  CAS  Google Scholar 

  2. Y. Xue, J. Sun, M. Abbas, Z. Chen, P. Wang, Y. Chen and J. Chen, New J. Chem., 43(8), 3454 (2019).

    Article  CAS  Google Scholar 

  3. M. J. Loedolff, B.-M. Goh, G. A. Koutsantonis and R. O. Fuller, New J. Chem., 42(18), 14894 (2018).

    Article  CAS  Google Scholar 

  4. J.-H. Ryu, S.-H. Kang, J.-H. Kim, Y.-J. Lee and K.-W. Jun, Korean J. Chem. Eng., 32(10), 1993 (2015).

    Article  CAS  Google Scholar 

  5. B. Sedighi, M. Feyzi and M. Joshaghani, J. Taiwan Inst. Chem. Eng., 50, 108 (2015).

    Article  CAS  Google Scholar 

  6. Y. Wang, S. Huang, X. Teng, H. Wang, J. Wang, Q. Zhao, Y. Wang and X. Ma, Front. Chem. Sci. Eng., 14, 802 (2020).

    Article  CAS  Google Scholar 

  7. W. Ma, G. Jacobs, R. A. Keogh, D. B. Bukur and B. H. Davis, Appl. Catal. A: Gen., 437–438, 1 (2012).

    Article  CAS  Google Scholar 

  8. V. R. Calderone, N. R. Shiju, D. C. Ferré and G. Rothenberg, Green Chem., 13(8), 1950 (2011).

    Article  CAS  Google Scholar 

  9. D. Xu, W. Li, H. Duan, Q. Ge and H. Xu, Catal. Lett., 102(3), 229 (2005).

    Article  CAS  Google Scholar 

  10. B. J. Lommerts, G. H. Graaf and A. A. C. M. Beenackers, Chem. Eng. Sci., 55(23), 5589 (2000).

    Article  CAS  Google Scholar 

  11. H. Bakhtiary-Davijany, F. Dadgar, F. Hayer, X. K. Phan, R. Myrstad, H. J. Venvik, P. Pfeifer and A. Holmen, Ind. Eng. Chem. Res., 51(42), 13574 (2012).

    Article  CAS  Google Scholar 

  12. O. Görke, P. Pfeifer and K. Schubert, Appl. Catal. A: Gen., 360(2), 232 (2009).

    Article  CAS  Google Scholar 

  13. V. B. Veljković, O. S. Stamenković, Z. B. Todorović, M. L. Lazić and D. U. Skala, Fuel, 88(9), 1554 (2009).

    Article  CAS  Google Scholar 

  14. H. Becker, R. Güttel and T. Turek, Catal. Sci. Technol., 6(1), 275 (2016).

    Article  Google Scholar 

  15. J. H. Yang, H.-J. Kim, D. H. Chun, H.-T. Lee, J.-C. Hong, H. Jung and J.-I. Yang, Fuel Process Technol., 91(3), 285 (2010).

    Article  CAS  Google Scholar 

  16. R. A. Rajadhyaksha and L. K. Doraiswamy, Catal. Rev., 13(1), 209 (1976).

    Article  CAS  Google Scholar 

  17. D. M. Marinković, M. R. Miladinović, J. M. Avramović, I. B. Krstić, M. V. Stanković, O. S. Stamenković, D. M. Jovanović and V. B. Veljković, Energy Convers. Manage., 163, 122 (2018).

    Article  CAS  Google Scholar 

  18. A. N. Pour, M. R. Housaindokht, J. Zarkesh, M. Irani and E. G. Babakhani, J. Ind. Eng. Chem., 18(2), 597 (2012).

    Article  CAS  Google Scholar 

  19. Sonal, K. Kondamudi, K. K. Pant and S. Upadhyayula, Ind. Eng. Chem. Res., 56(16), 4659 (2017).

    Article  CAS  Google Scholar 

  20. N. Moazami, M. L. Wyszynski, K. Rahbar, A. Tsolakis and H. Mahmoudi, Chem. Eng. Sci., 171, 32 (2017).

    Article  CAS  Google Scholar 

  21. A. Mosayebi and R. Abedini, Int. J. Hydrogen Energy, 42(44), 27013 (2017).

    Article  CAS  Google Scholar 

  22. T. J. Okeson, K. Keyvanloo, J. S. Lawson, M. D. Argyle and W. C. Hecker, Catal. Today, 261, 67 (2016).

    Article  CAS  Google Scholar 

  23. L.-P. Zhou, X. Hao, J.-H. Gao, Y. Yang, B.-S. Wu, J. Xu, Y.-Y. Xu and Y.-W. Li, Energy Fuel, 25(1), 52 (2011).

    Article  CAS  Google Scholar 

  24. C. I. Méndez and J. Ancheyta, Catal. Today, In Press (2020).

  25. W. Chen, I. A. W. Filot, R. Pestman and E. J. M. Hensen, ACS Catal., 7(12), 8061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. M. Kaltschmitt and U. Neuling, Biokerosene: Status and prospects, Springer-Verlag Berlin Heidelberg, Germany (2017).

    Google Scholar 

  27. H. Williams, K. M. Gnanamani, G. Jacobs, D. W. Shafer and D. Coulliette, Catalysts, 9(10), 857 (2019).

    Article  CAS  Google Scholar 

  28. F. Pöhlmann and A. Jess, Catal. Today, 275, 172 (2016).

    Article  CAS  Google Scholar 

  29. M. F. M. Post, A. C. Van’t Hoog, J. K. Minderhoud and S. T. Sie, AIChE J., 35(7), 1107 (1989).

    Article  CAS  Google Scholar 

  30. Y.-N. Wang, Y.-Y. Xu, H.-W. Xiang, Y.-W. Li and B.-J. Zhang, Ind. Eng. Chem. Res., 40(20), 4324 (2001).

    Article  CAS  Google Scholar 

  31. B. B. Hallac, K. Keyvanloo, J. D. Hedengren, W. C. Hecker and M. D. Argyle, Chem. Eng. J., 263, 268 (2015).

    Article  CAS  Google Scholar 

  32. E. W. Thiele, Ind. Eng. Chem., 31(7), 916 (1939).

    Article  CAS  Google Scholar 

  33. D. Vervloet, F. Kapteijn, J. Nijenhuis and J. R. van Ommen, Catal. Sci. Technol., 2(6), 1221 (2012).

    Article  CAS  Google Scholar 

  34. O. Levenspiel, Chemical reaction engineering, Wiley, New York (1999).

    Google Scholar 

  35. J. F. L. Page, Applied heterogeneous catalysis, Technip editions, Paris (1988).

    Google Scholar 

  36. A. Talebian-Kiakalaieh and N. A. S. Amin, J. Taiwan Inst. Chem. Eng., 59, 11 (2016).

    Article  CAS  Google Scholar 

  37. J. Y. Lim, J. McGregor, A. J. Sederman and J. S. Dennis, Chem. Eng. Sci., 141, 28 (2016).

    Article  CAS  Google Scholar 

  38. E. E. Gonzo and J. C. Gottifredi, Catal. Rev., 25(1), 119 (1983).

    Article  CAS  Google Scholar 

  39. M. Abdollahi, H. Atashi and F. Farshchi-Tabrizi, Adv. Powder Technol, 28(5), 1356 (2017).

    Article  CAS  Google Scholar 

  40. Z. Yang and Y. S. Lin, Ind. Eng. Chem. Res., 39(12), 4944 (2000).

    Article  CAS  Google Scholar 

  41. G. Buelna and Y. S. Lin, Micropor. Mesopor. Mater., 30(2), 359 (1999).

    Article  CAS  Google Scholar 

  42. P. Van Der Voort, C. Vercaemst, D. Schaubroeck and F. Verpoort, Phys. Chem. Chem. Phys., 10(3), 347 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. D. M. Marinković, J. M. Avramović, M. V. Stanković, O. S. Stamenković, D. M. Jovanović and V. B. Veljković. Energy Convers. Manage., 144, 399 (2017).

    Article  CAS  Google Scholar 

  44. L. Fratalocchi, C. G. Visconti, L. Lietti, E. Tronconi and S. Rossini, Appl. Catal. A: Gen., 512, 36 (2016).

    Article  CAS  Google Scholar 

  45. B. Todic, M. Mandic, N. Nikacevic and D. B. Bukur, Korean J. Chem. Eng., 35(4), 875 (2018).

    Article  CAS  Google Scholar 

  46. W. Yu, K. Hidajat and A. K. Ray, Appl. Catal. A: Gen., 260(2), 191 (2004).

    Article  CAS  Google Scholar 

  47. G. P. van der Laan and A. A. C. M. Beenackers, Appl. Catal. A: Gen., 193(1), 39 (2000).

    Article  CAS  Google Scholar 

  48. O. R. Inderwildi, S. J. Jenkins and D. A. King, J. Phys. Chem. C, 112(5), 1305 (2008).

    Article  CAS  Google Scholar 

  49. M. Ojeda, A. Li, R. Nabar, A. U. Nilekar, M. Mavrikakis and E. Iglesia, J. Phys. Chem. C, 114(46), 19761 (2010).

    Article  CAS  Google Scholar 

  50. C.-F. Huo, J. Ren, Y.-W. Li, J. Wang and H. Jiao, J. Catal., 249(2), 174 (2007).

    Article  CAS  Google Scholar 

  51. P. Azadi, G. Brownbridge, I. Kemp, S. Mosbach, J. S. Dennis and M. Kraft, ChemCatChem., 7(1), 137 (2015).

    Article  CAS  Google Scholar 

  52. F. G. Botes, B. van Dyk and C. McGregor, Ind. Eng. Chem. Res., 48(23), 10439 (2009).

    Article  CAS  Google Scholar 

  53. S. Shetty, A. P. J. Jansen and R. A. van Santen, J. Am. Chem. Soc., 131(36), 12874 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. J.-X. Liu, H.-Y. Su, D.-P. Sun, B.-Y. Zhang and W.-X. Li, J. Am. Chem. Soc., 135(44), 16284 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. E. Rebmann, P. Fongarland, V. Lecocq, F. Diehl and Y. Schuurman, Catal. Today, 275, 20 (2016).

    Article  CAS  Google Scholar 

  56. A. Sari, Y. Zamani and S. A. Taheri, Fuel Process Technol., 90(10), 1305 (2009).

    Article  CAS  Google Scholar 

  57. R. Zennaro, M. Tagliabue and C. H. Bartholomew, Catal. Today, 58(4), 309 (2000).

    Article  CAS  Google Scholar 

  58. A. Einbeigi, H. Atashi, A. A. Mirzaei, H. Zohdi-Fasaei and S. Golestan, J. Taiwan Inst. Chem. Eng., 103, 57 (2019).

    Article  CAS  Google Scholar 

  59. H. M. Koo, M. J. Park, D. J. Moon and J. W. Bae, Korean J. Chem. Eng., 35(6), 1263 (2018).

    Article  CAS  Google Scholar 

  60. A. Eshraghi, A. A. Mirzaei and H. Atashi, J. Nat. Gas Sci. Eng., 26, 940 (2015).

    Article  CAS  Google Scholar 

  61. B. Todic, T. Bhatelia, G. F. Froment, W. Ma, G. Jacobs, B. H. Davis and D. B. Bukur, Ind. Eng. Chem. Res., 52(2), 669 (2013).

    Article  CAS  Google Scholar 

  62. J. Li, L. Wu, S. Zhang, J. Wen, M. Liu, C. Wang and X. Li, Sustain. Energy Fuels, 3(1), 219 (2019).

    Article  CAS  Google Scholar 

  63. J. Li, Y. He, L. Tan, P. Zhang, X. Peng, A. Oruganti, G. Yang, H. Abe, Y. Wang and N. Tsubaki, Nat. Catal., 1(10), 787 (2018).

    Article  CAS  Google Scholar 

  64. L. Fratalocchi, L. Lietti, C. G. Visconti, N. Fischer and M. Claeys, Catal. Sci. Technol., 9(12), 3177 (2019).

    Article  CAS  Google Scholar 

  65. W. Chu, J. Xu, J. Hong, T. Lin and A. Khodakov, Catal. Today, 256, 41 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate University of Sistan and Baluchestan for helping and supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Eshraghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshraghi, A., Mirzaei, A.A., Rahimi, R. et al. Fischer-Tropsch Synthesis on Fe-Co-Pt/γ-Al2O3 catalyst: A mass transfer, kinetic and mechanistic study. Korean J. Chem. Eng. 37, 1699–1708 (2020). https://doi.org/10.1007/s11814-020-0590-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0590-6

Keywords

Navigation