Skip to main content
Log in

Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The Fischer-Tropsch synthesis (FTS) continues to be an attractive alternative for producing a broad range of fuels and chemicals through the conversion of syngas (H2 and CO), which can be derived from various sources, such as coal, natural gas, and biomass. Among iron carbides, Fe2C, as an active phase, has barely been studied due to its thermodynamic instability. Here, we fabricated a series of Fe2C embedded in hollow carbon sphere (HCS) catalysts. By varying the crystallization time, the shell thickness of the HCS was manipulated, which significantly influenced the catalytic performance in the FTS. To investigate the relationship between the geometric structure of the HCS and the physic-chemical properties of Fe species, transmission electron microscopy, X-ray diffraction, N2 physical adsorption, X-ray photo-electron spectroscopy, hydrogen temperature-programmed reduction, Raman spectroscopy, and Mössbauer spectroscopy techniques were employed to characterize the catalysts before and after the reaction. Evidently, a suitable thickness of the carbon layer was beneficial for enhancing the catalytic activity in the FTS due to its high porosity, appropriate electronic environment, and relatively high Fe2C content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dry M E. The Fischer-Tropsch process: 1950–2000. Catalysis Today, 2002, 71(3–4): 227–241

    Article  CAS  Google Scholar 

  2. Galvis H M T, de Jong KPD. Catalysts for production of lower olefins from synthesis gas: A review. ACS Catalysis, 2013, 3(9): 2130–2149

    Article  Google Scholar 

  3. Ail S S, Dasappa S. Biomass to liquid transportation fuel via Fischer-Tropsch synthesis: Technology review and currentscenario. Renewable & Sustainable Energy Reviews, 2016, 58: 267–286

    Article  CAS  Google Scholar 

  4. Niu L W, Liu X W, Liu X, Lv Z G, Zhang C H, Wen X D, Yang Y, Li Y W, Xu J. In situ XRD study on promotional effect of potassium on carburization of spray-dried precipitated Fe2O3 Catalysts. ChemCatChem, 2017, 9(9): 1691–1700

    Article  CAS  Google Scholar 

  5. Yong Y, Huang S H, Wang H Y, Wang H Y, Wang Y F, Wang J, Lv J, Li Z H, Ma X B. Monodisperse nano Fe3O4 on α-Al2O3 catalysts for Fischer-Tropsch synthesis to lower olefins promoter and size effects. ChemCatChem, 2017, 9(3): 3144–3152

    Google Scholar 

  6. Ma W P, Jacobs G, Sparks D E, Klettlinger JLS, Yen C H, Davis B H. Fischer-Tropsch synthesis and water gas shift kinetics for a precipitated iron catalyst. Catalysis Today, 2016, 275: 49–58

    Article  CAS  Google Scholar 

  7. de Smit E, Weckhuysen B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour. Chemical Society Reviews, 2008, 37(12): 2758–2781

    Article  CAS  Google Scholar 

  8. Le Caer G, Dubois J M, Pijolat M, Perrichon V, Bussiere P. Characterization by Möessbauer spectroscopy of iron carbides formed by Fischer-Tropsch synthesis. Journal of Physical Chemistry, 1982, 86(24): 4799–4808

    Article  CAS  Google Scholar 

  9. Zhao S, Liu X W, Huo C F, Li Y W, Wang J G, Jiao H J. Determining surface structure and stability of ε-Fe2C, χ-Fe5C2, π-Fe3C and Fe4C phases under carburization environment from combined DFT and atomistic thermodynamic studies. Catalysis Structure & Reactivity, 2015, 1(1): 44–60

    Article  Google Scholar 

  10. de Smit E, Cinquini F, Beale A M, Safonova O V, van Beek W, Sautet P, Weckhuysen B M. Stability and reactivity of iron carbide catalyst phases in Fischer-Tropsch synthesis: Controlling μC. Journal of the American Chemical Society, 2010, 132(42): 14928–14941

    Article  CAS  Google Scholar 

  11. Manes M, Damick A D, Mentser M, Cohn E M, Hofer L J E. Hexagonal iron carbide as an intermediate in the carbiding of iron Fischer-Tropsch catalysts 1,2. Journal of the American Chemical Society, 1952, 74(24): 6207–6209

    Article  CAS  Google Scholar 

  12. Huo C F, Li W Y, Wang J, Jiao H. Insight into CH4 formation in iron-catalyzed Fischer-Tropsch synthesis. Journal of the American Chemical Society, 2009, 131(41): 14713–14721

    Article  CAS  Google Scholar 

  13. Xu K, Cheng Y, Lin J, Wang H, Xie S H, Pei Y, Yan S R, Qiao M H, Li Z H, Zong B N. Nanocrystalline iron-boron catalysts for low-temperature CO hydrogenation: Selective liquid fuel production and structure-activity correlation. Journal of Catalysis, 2016, 339: 102–110

    Article  CAS  Google Scholar 

  14. Mogorosi R P, Fischer N, Claeys M, Steen E V. Strong-metal-support interaction by molecular design: Fe-silicate interactions in Fischer-Tropsch catalysts. Journal of Catalysis, 2012, 289: 140–150

    Article  CAS  Google Scholar 

  15. Xu K, Sun B, Lin J, Wen W, Pei Y, Yan S R, Qiao M H, Zhang X X, Zong B N. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst. Nature Communications, 2014, 5(1): 57–83

    Google Scholar 

  16. Wang P, Chen W, Chiang F K, Dugulan A I, Song Y, Pestman R, Zhang K, Yao J, Feng B, Miao P, Xu W, Hensen E J. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalyst. Science Advances, 2018, 4(10): 2947–2953

    Article  Google Scholar 

  17. Cheng Y, Lin J, Xu K, Wang H, Yao X Y, Pei Y, Yan S R, Qiao M H, Zong B N. Fischer-Tropsch synthesis to lower olefins over potassium-promoted reduced graphene oxide-supported iron catalysts. ACS Catalysis, 2016, 6(1): 389–399

    Article  CAS  Google Scholar 

  18. Torres Galvis H M, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 335(6): 835–838

    Article  CAS  Google Scholar 

  19. Zhou X P, Ji J, Wang D, Duan X, Qiao G, Chen D, Zhou X. Hierarchical structured α-Al2O3 supported S-promoted Fe catalysts for direct conversion of syngas to lower olefins. Chemical Communications, 2015, 51(42): 8853–8856

    Article  CAS  Google Scholar 

  20. Barrault J, Forquy C, Menezo J C, Maurel R. Selective hydrocondensation of CO to light olefins with alumina-supported iron catalysts. Reaction Kinetics and Catalysis Letters, 1980, 15(2): 153–158

    Article  CAS  Google Scholar 

  21. Chen Q, Liu G, Ding S, Chanmiya Sheikh M, Long D, Yoneyama Y, Tsubaki N. Design of ultra-active iron-based Fischer-Tropsch synthesis catalysts over spherical mesoporous carbon with developed porosity. Chemical Engineering Journal, 2018, 334: 714–724

    Article  CAS  Google Scholar 

  22. Jiang F, Zhang M, Liu B, Xu Y B, Liu X H. Insights into the influence of support and potassium or sulfur promoter on iron-based Fischer-Tropsch synthesis: Understanding the control of catalytic activity, selectivity to lower olefins, and catalyst deactivation. Catalysis Science & Technology, 2017, 7(5): 1245–1265

    Article  CAS  Google Scholar 

  23. Lu J Z, Yang L J, Xu B L, Wu Q, Zhang D, Yuan S J, Zhai Y, Wang X Z, Fan Y N, Hu Z. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins. ACS Catalysis, 2014, 4(2): 613–621

    Article  CAS  Google Scholar 

  24. Santos V P, Wezendonk T A, Jaén J J, Dugulan A, Nasalevich M, Islam H, Chojecki A, Sartipi S, Sun X, Hakeem A, et al., Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nature Communications, 2015, 6(1): 64–51

    Article  Google Scholar 

  25. Teng X S, Huang S Y, Wang J, Wang H Y, Zhao Q, Yuan Y, Ma X B. Fabrication of Fe2C embedded in hollow carbon spheres: A highperformance and stable catalyst for Fischer-Tropsch synthesis. ChemCatChem, 2018, 10(17): 3883–3891

    Article  CAS  Google Scholar 

  26. Yao D W, Wang Y, Li Y, Zhao Y J, Lv J, Ma X B. A high-performance nanoreactor for carbon-oxygen bonds hydrogenation reactions achieved by the morphology of nanotube-assembled hollow sphere. ACS Catalysis, 2017, 8(2): 1218–1226

    Article  Google Scholar 

  27. Zhang Z P, Dai W W, Xu X C, Zhang J, Shi B F, Xu J, Tu W F, Han Y F. MnOx promotional effects on olefins synthesis directly from syngas over bimetallic FeMnOx/SiO2 catalysts. AIChE Journal. American Institute of Chemical Engineers, 2017, 63(10): 4451–4464

    Article  CAS  Google Scholar 

  28. Tao Z C, Yang Y, Zhang C H, Li T Z, Ding M Y, Xiang H W, Li Y W. Study of manganese promoter on a precipitated iron-based catalyst for Fischer-Tropsch synthesis. Journal of Natural Gas Chemistry, 2007, 16(3): 278–285

    Article  CAS  Google Scholar 

  29. Oschatz M, van Deelen T W, Weber J L, Lamme W S, Wang G, Goderis B, Verkinderen O, Dugulan A I, de Jong K P. Effects of calcination and activation conditions on ordered mesoporous carbon supported iron catalysts for production of lower olefins from synthesis gas. Catalysis Science & Technology, 2016, 6(24): 8464–8473

    Article  CAS  Google Scholar 

  30. Ferrari A C, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review. B, 2000, 61(20): 14095–14107

    Article  CAS  Google Scholar 

  31. Yan B, Huang S Y, Wang S P, Ma X B. Catalytic oxidative carbonylation over Cu2O nanoclusters supported on carbon materials: The role of the carbon support. ChemCatChem, 2015, 6(9): 2671–2679

    Article  Google Scholar 

  32. Li T Z, Wang H L, Yang Y, Xiang H W, Li Y W. Effect of manganese on the catalytic performance of an iron-manganese bimetallic catalyst for light olefin synthesis. Journal of Energy Chemistry, 2013, 22(4): 624–632

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant No. U1462204), Natural Science Foundation of Tianjin City (No. 8JCQNJC05900) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Huang, S., Teng, X. et al. Controllable Fe/HCS catalysts in the Fischer-Tropsch synthesis: Effects of crystallization time. Front. Chem. Sci. Eng. 14, 802–812 (2020). https://doi.org/10.1007/s11705-019-1866-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-019-1866-4

Keywords

Navigation