Skip to main content
Log in

Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We demonstrate ultra-fast fabrication of anode-supported solid oxide fuel cells (SOFCs) using microwave-assisted sintering technology. Due to the nature of microwaves that transfers heat directly into the material, the SOFC sintering process was completed within 8 h, ∼ six times faster compared to a conventional sintering process (∼47 h). Despite extremely rapid processing time, the microstructure of the SOFC fabricated by microwave-assisted sintering (M-SOFC) was almost identical to that of the conventionally sintered SOFC. Moreover, the electrochemical performance of the M-SOFC at 750 °C was 0.52 W/cm2 in peak power density, which is even higher than that of the conventionally sintered sample (0.49W/cm2). Thus, our results demonstrate that the ultra-fast microwave-assisted sintering process is a highly effective and practically promising technology for fabricating high performance SOFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Wachsman and K. T. Lee, Science, 334(6058), 935 (2011).

    Article  CAS  Google Scholar 

  2. K. T. Lee, H. S. Yoon and E. D. Wachsman, J. Mater. Res., 27(16), 2063 (2012).

    Article  CAS  Google Scholar 

  3. J.-h. Myung, D. Neagu, D. N. Miller and J. T. Irvine, Nature, 537(7621), 528 (2016).

    Article  CAS  Google Scholar 

  4. E. D. Wachsman, C. A. Marlowe and K. T. Lee, Energy Environ. Sci., 5(2), 5498 (2012).

    Article  Google Scholar 

  5. B. C. Steele and A. Heinzel, Nature, 414, 345 (2001).

    Article  CAS  Google Scholar 

  6. D. W. Joh, J. H. Park, D. Kim, E. D. Wachsman and K. T. Lee, ACS Appl. Mater. Interfaces, 9(10), 8443 (2017).

    Article  CAS  Google Scholar 

  7. J. H. Park, K. T. Bae, K. J. Kim, D. W. Joh, D. Kim, J.-H. Myung and K. T. Lee, Ceram. Int., 45(9), 12154 (2019).

    Article  CAS  Google Scholar 

  8. J. Kim, J. Ahn, J. Shin, K. J. Yoon, J.-W. Son, J.-H. Lee, D. Shin, H.-W. Lee and H.-I. Ji, J. Mater. Chem. A, 7(16), 9958 (2019).

    Article  CAS  Google Scholar 

  9. Y. Zhang, X. Huang, Z. Lu, Z. Liu, X. Ge, J. Xu, X. Xin, X. Sha and W. Su, J. Am. Ceram. Soc., 89(7), 2304 (2006).

    CAS  Google Scholar 

  10. D. E. Fowler, A. C. Messner, E. C. Miller, B. W. Slone, S. A. Barnett and K. R. Poeppelmeier, Chem. Mater., 27(10), 3683 (2015).

    Article  CAS  Google Scholar 

  11. I. Thaheem, D. W. Joh, T. Noh and K. T. Lee, Int. J. Hydrogen Energy, 44(8), 4293 (2019).

    Article  CAS  Google Scholar 

  12. D. Kim, J. W. Park, B.-H. Yun, J. H. Park and K. T. Lee, ACS Appl. Mater. Interfaces, 11(35), 31786 (2019).

    Article  CAS  Google Scholar 

  13. K. J. Kim, M. K. Rath, H. H. Kwak, H. J. Kim, J. W. Han, S.-T. Hong and K. T. Lee, ACS Catal., 9(2), 1172 (2019).

    Article  CAS  Google Scholar 

  14. T. Balaji, R. Govindaiah, M. Sharma, Y. Purushotham, A. Kumar and T. Prakash, Mater. Lett., 56(4), 560 (2002).

    Article  CAS  Google Scholar 

  15. R. Camaratta, A. C. Lima, M. Reyes, M. Hernandez-Fenollosa, J. O. Messana and C. Bergmann, Mater. Res. Bull., 48(4), 1569 (2013).

    Article  CAS  Google Scholar 

  16. Z. Xie, J. Yang, X. Huang and Y. Huang, J. Eur. Ceram. Soc., 19(3), 381 (1999).

    Article  CAS  Google Scholar 

  17. S. Fujitsu, M. Ikegami and T. Hayashi, J. Am. Ceram. Soc., 83(8), 2085 (2000).

    Article  CAS  Google Scholar 

  18. Z. Jiao, N. Shikazono and N. Kasagi, J. Power Sources, 196(13), 5490 (2011).

    Article  CAS  Google Scholar 

  19. Z. Jiao, N. Shikazono and N. Kasagi, J. Power Sources, 195(24), 8019 (2010).

    Article  CAS  Google Scholar 

  20. A. Gondolini, E. Mercadelli, A. Sanson, S. Albonetti, L. Doubova and S. Boldrini, Ceram. Int., 37(4), 1423 (2011).

    Article  CAS  Google Scholar 

  21. M. Seyednezhad, A. Rajabi, A. Muchtar and M. R. Somalu, Ceram. Int., 41(4), 5663 (2015).

    Article  CAS  Google Scholar 

  22. Z. Jiao, N. Shikazono and N. Kasagi, J. Power Sources, 195(1), 151 (2010).

    Article  CAS  Google Scholar 

  23. A. Leonide, V. Sonn, A. Weber and E. Ivers-Tiffée, J. Electrochem. Soc., 155(1), B36 (2007).

    Article  Google Scholar 

  24. P. Gansor, K. Sabolsky, J. W. Zondlo and E. M. Sabolsky, Mater. Lett., 105, 80 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; The Ministry of Science and ICT) (No. NRF-2020R1A2C2010690, NRF-2019M3E6A1103944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Taek Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.J., Park, J.H. & Lee, K.T. Ultra-fast fabrication of anode-supported solid oxide fuel cells via microwave-assisted sintering technology. Korean J. Chem. Eng. 37, 1436–1439 (2020). https://doi.org/10.1007/s11814-020-0578-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0578-2

Keywords

Navigation