Skip to main content
Log in

Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Supercritical water (SCW) impregnation is an efficient and feasible method that has been used to prepare highly dispersed supported catalysts, but few studies have investigated the stability of support materials in supercritical water. Thus, our aim was to investigate the hydrothermal stability of zeolite supports (ZSM-5, TS-1, ZSM-35, HY, 13X, Beta, SAPO-11 and SAPO-34) as model compounds in supercritical water. Results showed that almost all of zeolites suffered from crystallinity change, structural properties degradation, obvious desilication and dealumination. The decrease of surface areas and the collapse of crystalline structures in HY, 13X, Beta, SAPO-11 and SAPO-34 were more serious compared to ZSM-5, ZSM-35 and TS-1. The micropore areas and acidity of all SCW-treated zeolites were reduced. 13X with lower Si/Al ratio had higher hydrothermal stability than HY due to the formation of extra-framework Al (EFAL). EFAl also generated strong Lewis acid sites determined by ammonia temperature-programmed desorption and 27Al magic angle spinning nuclear magnetic resonance. Desilication and dealumination were simultaneous, and led to the increase of framework Si/Al ratio. ZSM zeolites (ZSM-5, ZSM-35 and TS-1) had higher hydrothermal stability than HY, 13X, Beta, SAPO-11 and SAPO-34 in SCW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Sue, K. Murata, K. Kimura and K. Arai, Green Chem., 5, 659 (2003).

    Article  CAS  Google Scholar 

  2. K. Sue, M. Suzuki, K. Arai, T. Ohashi, H. Ura, K. Matsui, Y. Hakuta, H. Hayashi, M. Watanabe and T. Hiaki, Green Chem., 8, 634 (2006).

    Article  CAS  Google Scholar 

  3. T. Adschiri, Y. W. Lee, M. Goto and S. Takami, Green Chem., 13, 1380 (2011).

    Article  CAS  Google Scholar 

  4. A. Aimable, H. Muhr, C. Gentric, F. Bernard, F. L. Cras and D. Aymes, Powder Technol., 190, 99 (2009).

    Article  CAS  Google Scholar 

  5. J. W. Lee, J. H. Lee, T. T. Viet, J. Y. Lee, J. S. Kim and C. H. Lee, Electrochim. Acta, 55, 3051 (2010).

    Google Scholar 

  6. D. Rangappa, T. Naka, S. Ohara and T. Adschiri, Cryst. Growth Des., 10, 11 (2010).

    Article  CAS  Google Scholar 

  7. H. Li, T. Arita, S. Takami and T. Adschiri, Prog. Cryst. Growth Ch., 57, 117 (2011).

    Article  CAS  Google Scholar 

  8. M. Hosseinpour, H. Amiri, S. J. Ahmadi and M. A. Mousavian, J. Supercrit. Fluid., 107, 479 (2016).

    Article  CAS  Google Scholar 

  9. K. J. Ziegler, R. C. Doty, K. P. Johnston and B. A. Korgel, J. Am. Chem. Soc., 123, 7797 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. J. Otsu and Y. Oshima, J. Supercrit. Fluid., 33, 61 (2005).

    CAS  Google Scholar 

  11. O. Sawai and Y. Oshima, J. Supercrit. Fluid., 47, 240 (2008).

    Article  CAS  Google Scholar 

  12. O. Sawai and Y. Oshima, J. Mate. Sci., 43, 2293 (2008).

    Article  CAS  Google Scholar 

  13. D. Zhao, E. Han, X. Wu and H. Guan, Mater. Lett., 60, 3544 (2006).

    Article  CAS  Google Scholar 

  14. C. B. Xu and A. S. Teja, J. Supercrit. Fluid., 39, 135 (2006).

    Article  CAS  Google Scholar 

  15. B. Qiu, L. N. Han, J. C. Wang, L. P. Chang and W. R. Bao, Energy Fuel, 25, 591 (2011).

    Article  CAS  Google Scholar 

  16. J. C. Wang, B. Qiu, L. N. Han, G. Feng, Y. F. Hu, L. P. Chang and W. R. Bao, J. Hazard. Mater., 213, 184 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. K. S. Lin, H. P. Wang and Y. W. Yang, Chemosphere, 39, 1385 (1999).

    Article  CAS  Google Scholar 

  18. K. S. Lin and H. P. Wang, Langmuir, 16, 2627 (2000).

    Article  CAS  Google Scholar 

  19. K. S. Lin and H. P. Wang, Appl. Catal. B-Environ., 22, 261 (1999).

    Article  CAS  Google Scholar 

  20. N. Mo, W. Tandar and P. E. Savage, J. Supercrit. Fluid., 102, 73 (2015).

    Article  CAS  Google Scholar 

  21. P. G. Duan, Y. P. Xu, F. Wang, B. Wang and W. H. Yan, Biochem. Eng. J., 116, 105 (2016).

    Article  CAS  Google Scholar 

  22. K. Tomita, S. Koda and Y. Oshima, Ind. Eng. Chem. Res., 41, 3341 (2002).

    Article  CAS  Google Scholar 

  23. Y. J. Lu, Y. M. Zhu, S. Li, X. M. Zhang and L. J. Guo, Biomass Bioenergy, 67, 125 (2014).

    Article  CAS  Google Scholar 

  24. Y. Karakus, F. Aynaci, E. Kipçak and M. Akgün, Int. J. Hydrogen Energy, 38, 7298 (2013).

    Article  CAS  Google Scholar 

  25. M. Akizuki and Y. Oshima, J. Supercrit. Fluid., 84, 36 (2013).

    Article  CAS  Google Scholar 

  26. N. Kometani, S. Hirata and M. Chikada, J. Supercrit. Fluid., 120, 443 (2017).

    Article  CAS  Google Scholar 

  27. A. Ashraf, S. A. Dastgheib, G. Mensing and M. A. Shannon, J. Supercrit. Fluid., 76, 32 (2013).

    Article  CAS  Google Scholar 

  28. Y. Matsumura, X. Xu and M. J. A. Jr., Carbon, 35, 819 (1997).

    Article  CAS  Google Scholar 

  29. F. Salvador, N. M. Sanchez, M. J. S. Montero, J. Montero and C. Lzquierdo, J. Supercrit. Fluid., 74, 1 (2013).

    Article  CAS  Google Scholar 

  30. G. Beaucage, H. K. Kammler and S. E. Pratsinis, J. Appl. Crystallogr., 37, 523 (2004).

    Article  CAS  Google Scholar 

  31. T. Li, J. Cheng, R. Huang, W. J. Yang, J. H. Zhou and K. F. Cen, Int. J. Hydrogen Energ., 41, 21883 (2016).

    Article  CAS  Google Scholar 

  32. D. P. Serrano, G. Calleja, J. A. Botas and F. J. Gutierrez, Sep. Purif. Technol., 54, 1 (2007).

    Article  CAS  Google Scholar 

  33. Y. Liu, W. P. Zhang, S. J. Xie, L. Y. Xu, X. W. Han and X. H. Bao, J. Phys. Chem. B, 112, 1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. M. B. Abda, O. Schäf, F. Ziarelli, H. Pizzala, R. Denoyel, S. Viel and Y. Zerega, Micropor. Mesopor. Mater., 234, 200 (2016).

    Article  CAS  Google Scholar 

  35. S. Kumar, A. K. Sinha, S. G. Hegde and S. Sivasanker, J. Mol. Catal. A-Chem., 154, 115 (2000).

    Article  CAS  Google Scholar 

  36. A. K. Jamil, O. Muraza, R. Osuga, E. N. Shafei, K. H. Choi, Z. H. Yamani, A. Somali and T. Yokoi, J.Phys. Chem. C, 120, 22918 (2016).

    Article  CAS  Google Scholar 

  37. W. Lutz, R. Kurzhals, S. Sauerbeck, H. Toufar, J. C. Buhl, T. Gesing, W. Altenburg and C. Jäger, Micropor. Mesopor. Mater., 132, 31 (2010).

    Article  CAS  Google Scholar 

  38. L. H. Ding, Y. Zheng, Y. Hong and Z. Ring, Micropor. Mesopor. Mater., 101, 432 (2007).

    Article  CAS  Google Scholar 

  39. R. M. Ravenelle, F. Schüβler, A. D. Amico, N. Danilina, J. A. V. Bokhoven, J. A. Lercher, C. W. Jones and C. Sievers, J. Phys. Chem. C, 114, 19582 (2010).

    Article  CAS  Google Scholar 

  40. J. Wang, J. C. Groen, W. B. Yue, W. Z. Zhou and M. O. Coppens, J. Mate. Chem., 18, 468 (2008).

    Article  CAS  Google Scholar 

  41. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquérol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985).

    Article  CAS  Google Scholar 

  42. A. M. Puziy, O. I. Poddubnaya, A. M. Alonso, A. C. Muñiz, F. S. García and J. M. D. Tascón, Carbon, 45, 1941 (2007).

    Article  CAS  Google Scholar 

  43. L. K. G. Bhatta, S. Subramanyam, M. D. Chengala, U. M. Bhatta and K. Venkatesh, Ind. Eng. Chem. Res., 54, 10876 (2015).

    Article  CAS  Google Scholar 

  44. J. Aguado, D. P. Serrano, J. M. Escola and A. Peral, J. Anal. Appl. Pyrol., 85, 352 (2009).

    Article  CAS  Google Scholar 

  45. D. P. Serrano, J. Aguado, J. M. Rodríguez and A. Peral, J. Anal. Appl. Pyrol., 79, 456 (2007).

    Article  CAS  Google Scholar 

  46. E. Dumitriu, V. Hulea, I. Fechete, A. Auroux, J. F. Lacaze and C. Guimon, Micropor. Mesopor. Mater., 43, 341 (2001).

    Article  CAS  Google Scholar 

  47. F. Lónyi and J. Valyon, Thermochim. Acta, 373, 53 (2001).

    Article  Google Scholar 

  48. F. Lónyi and J. Valyon, Micropor. Mesopor. Mater., 47, 293 (2001).

    Article  Google Scholar 

  49. F. Frusteri, G. Bonura, C. Cannilla, G. D. Ferrante, A. Aloise, E. Catizzone, M. Migliori and G. Giordano, Appl. Catal. B-Environ., 176, 522 (2015).

    Article  CAS  Google Scholar 

  50. M. A. Ali, B. Brisdon and W. J. Thomas, Appl. Catal. A-Gen., 252, 149 (2003).

    Article  CAS  Google Scholar 

  51. P. Wang, B. J. Shen and J. S. Gao, Catal. Today, 125, 155 (2007).

    Article  CAS  Google Scholar 

  52. M. P. Moisés, P. P. D. Almeida, C. T. P. D. Silva, A. W. Rinaldi, E. M. Girotto, J. G. Meneguin, P. A. Arroyo, R. E. Bazan, S. L. Fávaro and E. Radovanovic, Rsc Adv., 4, 48576 (2014).

    Article  CAS  Google Scholar 

  53. K. V. V. S. B. S. R. Murthy, S. J. Kulkarni, M. Chandrakala, K. V. V. K. Mohan, P. Pal and T. S. R. P. Rao, J. Porous Mater., 17, 185 (2010).

    Article  CAS  Google Scholar 

  54. D. R. C. Huybrechts, P. L. Buskens and P. A. Jacobs, J. Mol. Catal., 71, 129 (1992).

    Article  CAS  Google Scholar 

  55. K. F. Lin, Z. H. Sun, S. Lin, D. Z. Jiang and F. S. Xiao, Micropor. Mesopor. Mater., 72, 193 (2004).

    Article  CAS  Google Scholar 

  56. J. Datka, W. Kolidziejski, J. Klinowski and B. Sulikowski, Catal. Lett., 19, 159 (1993).

    Article  CAS  Google Scholar 

  57. I. Hannus, Z. Kónya, J. B. Nagy, P. Lentz and I. Kiricsi, Appl. Catal. B-Environ., 17, 157 (1998).

    Article  CAS  Google Scholar 

  58. W. Lutz, W. Gessner, R. Bertram, I. Pitsch and R. Fricke, Micropor. Mater., 12, 131 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Tian.

Electronic supplementary material

11814_2018_84_MOESM1_ESM.pdf

Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Gu, J. et al. Hydrothermal stability of different zeolites in supercritical water: Implication for synthesis of supported catalysts by supercritical water impregnation. Korean J. Chem. Eng. 35, 1932–1940 (2018). https://doi.org/10.1007/s11814-018-0084-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-018-0084-y

Keywords

Navigation