Skip to main content
Log in

Optimization of extraction process for bioactive compounds from Litsea cubeba fruits

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Response surface methodology (RSM) was applied to evaluate the extraction of active compounds from Litsea cubeba fruits. A central composite design (CCD) with five levels and three process parameters (extraction temperature, extraction time and ethanol concentration) was used to investigate the influence of the extraction temperature, extraction time and ethanol concentration on the multiple response variables (TPC, DPPH and ABTS assays). The results of the ANOVA analysis show that the quadratic term of the ethanol concentration was significant for all the response variables. The quadratic model was highly significant (P<0.05) for all the response variables. After optimizing for multi-response, the optimal conditions were determined as an extraction temperature of 42.3 ºC, extraction time of 126.4min and ethanol concentration of 51%. Moreover, the extract of Litsea cubeba fruit attested possessing tyrosinase inhibitory activity, with an IC50 value of 5,720 μg mL−1. The second-order kinetic model represented the kinetic data very well. In addition, the obtained values of the effective diffusivities were in the range of 2.28-5.83×10−11m2s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. T. Chang and F. H. Chu, Tree Genet. Genom., 7, 835 (2011).

    Article  Google Scholar 

  2. C. J. Chen, Y. H. Tseng, F. H. Chu, T. Y. Wen, W. W. Cheng, Y. T. Chen, N. W. Tsao and S. Y. Wang, J. Wood Sci., 58, 538 (2012).

    Article  CAS  Google Scholar 

  3. T. T. Liu and T. S. Yang, Int. J. Food Microbiol., 156, 68 (2012).

    Article  CAS  Google Scholar 

  4. Y. Wang, Z. T. Jiang and R. Li, Eur. Food Res. Technol., 228, 865 (2009).

    Article  CAS  Google Scholar 

  5. P. Gogoi, P. Baruah and S. C. Nath, J. Essent. Oil Res., 9, 213 (1997).

    Article  CAS  Google Scholar 

  6. Y. Li, W. Kong, M. Li, H. Liu, X. Zhao, S. Yang and M. Yang, Ind. Crops Prod., 80, 186 (2016).

    Article  CAS  Google Scholar 

  7. B. Turner, Int. Pest Control, 41, 185 (1999).

    Google Scholar 

  8. S. M. Seo, J. Kim, S. G. Lee, C. H. Shin, S. C. Shin and I. K. Park, J. Agric. Food Chem., 57, 6596 (2009).

    Article  CAS  Google Scholar 

  9. M. Luo, L. K. Jiang and G. L. Zou, J. Food Prot., 68, 581 (2005).

    Article  CAS  Google Scholar 

  10. C. L. Ho, P.O. Jie, Y. C. Liu, C. P. Hung, M. C. Tsai, P. C. Liao, E. I. Wang, Y. L. Chen and Y. C. Su, Nat. Prod. Commum., 5, 617 (2010).

    CAS  Google Scholar 

  11. J.K. Hwang, E. M. Choi and J. H. Lee, Fitoterapia, 76, 684 (2005).

    Article  Google Scholar 

  12. X.W. Huang, Y. C. Feng, Y. Huang and H. L. Li, J. Essent. Oil Res., 25, 112 (2013).

    Article  CAS  Google Scholar 

  13. Y. Wang, Z.T. Jiang and R. Li, J. Essent. Oil Bear Plants, 15, 134 (2012).

    Article  CAS  Google Scholar 

  14. R.K. Saini and Y.S. Keum, Food Res. Int., 82, 59 (2016).

    Article  CAS  Google Scholar 

  15. M. Latoui, B. Aliakbarian, A. A. Casazza, M. Seffen, A. Converti and P. Perego, Food Bioprod. Process., 90, 748 (2012).

    Article  CAS  Google Scholar 

  16. N.G.T. Meneses, S. Martins, J.A. Teixeira and S. I. Mussatto, Sep. Purif. Technol., 108, 152 (2013).

    Article  CAS  Google Scholar 

  17. A. Sood and M. Gupta, Food Biosci., 12, 100 (2015).

    Article  CAS  Google Scholar 

  18. H.W. Chen, G. B. Hong and Z. J. Chen, Asia-Pac. J. Chem. Eng., 12, 33 (2017).

    Article  CAS  Google Scholar 

  19. D.S. Correia, C.V. Goncalves, S.S. da Cunha Jr. and V.A. Ferraresi, J. Mater. Process Technol., 160, 70 (2005).

    Article  Google Scholar 

  20. V. L. Singleton and J. A. Rossi, Am. J. Enol. Viticult., 16, 144 (1965).

    CAS  Google Scholar 

  21. K. Shimada, K. Fujikawa, K. Yahara and T. Nakamura, J. Agr. Food Chem., 40, 945 (1992).

    Article  CAS  Google Scholar 

  22. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radical Bio. Med., 26, 1231 (1999).

    Article  CAS  Google Scholar 

  23. I. Kubo and I. Kinst-Hori, J. Agric. Food. Chem., 46, 5338 (1998).

    Article  CAS  Google Scholar 

  24. P. Izadiyan and B. Hemmateenejad, Food. Chem., 190, 864 (2016).

    Article  CAS  Google Scholar 

  25. D.K. Saxena, S. K. Sharma and S. S. Sambi, Grasas. Aceites., 62, 198 (2011).

    Article  CAS  Google Scholar 

  26. S. Sayyar, Z. Z. Abidin, R. Yunus and A. Muhammad, Am. J. Appl. Sci., 6, 1390 (2009).

    Article  Google Scholar 

  27. K.R. Krishnan, M. Sivarajan, S. Babuskin, G. Archana, P. A. S. Babu and M. Sukumar, J. Food Eng., 117, 326 (2013).

    Article  Google Scholar 

  28. H.G. Schwartzberg, J. Food Sci., 40, 211 (1975).

    Article  Google Scholar 

  29. P. Balasubramani, R. Viswanathan and M. Vairamani, Biosyst. Eng., 114, 205 (2013).

    Article  Google Scholar 

  30. S. Ferdosh, M. Z. I. Sarker, N. N. N. A. Rahman, M. J. H. Akand, K. Ghafoor, M. B. Awang and M.O. A. Kadir, Korean J. Chem. Eng., 30, 1466 (2013).

    Article  CAS  Google Scholar 

  31. G. J. Swamy, A. Sangamithra and V. Chandrasekar, Dyes Pigm., 111, 64 (2014).

    Article  CAS  Google Scholar 

  32. Z. Ilbay, S. Sahin and K. Büyükkabasakal, Korean J. Chem. Eng., 31, 1661 (2014).

    Article  CAS  Google Scholar 

  33. N. Ilaiyaraja, K.R. Likhith, G.R. Sharath Babu and F. Khanum, Food Chem., 173, 348 (2015).

    Article  CAS  Google Scholar 

  34. S. Hemwimon, P. Pavasant and A. Shotipruk, Sep. Purif. Technol., 54, 44 (2007).

    Article  CAS  Google Scholar 

  35. M. Herrero, P. J. Martín-Álvarez, F. J. Señoráns, A. Cifuentes and E. Ibáñez, Food. Chem., 93, 417 (2005).

    Article  CAS  Google Scholar 

  36. J. Shi, J. Yu, J. Pohorly, C. Young, M. Bryan and Y. Wu, J. Food Agr. Environ., 1, 42 (2003).

    CAS  Google Scholar 

  37. S. Malhotra, R. Shukla, S. Kulshrestha and A. Siddiqui, J. Chem. Biol. Phys. Sci., 6, 574 (2016).

    CAS  Google Scholar 

  38. A.D. Sotto, F. Durazzi, M.G. Sarpietro and G. Mazzanti, Food Chem. Toxico., l60, 141 (2013).

    Article  Google Scholar 

  39. H. F. Wang, K. H. Yih and K. F. Huang, J. Food Drug. Anal., 18, 24 (2010).

    Google Scholar 

  40. A.M. Goula, J. Food Eng., 117, 492 (2013).

    Article  Google Scholar 

  41. D. Amendola, D. De Faveri and G. Spigno, J. Food Eng., 97, 384 (2010).

    Article  CAS  Google Scholar 

  42. P. Katsampa, E. Valsamedou, S. Grigorakis and D. P. Makris, Ind. Crops Prod., 77, 535 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Bing Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, CL., Hong, GB. Optimization of extraction process for bioactive compounds from Litsea cubeba fruits. Korean J. Chem. Eng. 35, 187–194 (2018). https://doi.org/10.1007/s11814-017-0251-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-017-0251-6

Keywords

Navigation