Skip to main content
Log in

Quantitative analysis of carbon nanotube cross-linking reactions

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Covalent cross-linking of carbon nanotubes (CNTs) is a useful way of transferring the unique properties of individual CNTs to macroscopic structures for a wide variety of applications. For elaborate engineering of the cross-linking reaction of CNTs, quantitative analysis of cross-linking reaction is imperative. We report here a universally applicable method to quantitatively analyze the cross-linking of CNTs by esterification. To distinguish the cross-linking reaction from the one-side reaction, where only one end of the linker reacts with a CNT, mass and molar balances were established based on thermogravimetric analysis data. This analysis revealed that approximately one in five linkers was involved in the cross-linking reaction. Qualitative characterizations such as Fourier transform infrared and Raman spectroscopy were also used to confirm the cross-linking reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Hirsch, Angew. Chem. Int. Ed., 41, 1853 (2002).

    Article  CAS  Google Scholar 

  2. S. Banerjee, T. Hemraj-Benny and S. S. Wong, Adv. Mater., 17, 17 (2005).

    Article  CAS  Google Scholar 

  3. J. L. Bahr and J. M. Tour, J. Mater. Chem., 12, 1952 (2002).

    Article  CAS  Google Scholar 

  4. M. Holzinger, J. Steinmetz, D. Samaille, M. Glerup, M. Paillet, P. Bernier, L. Ley and R. Graupner, Carbon, 42, 941 (2004).

    Article  CAS  Google Scholar 

  5. J. Min, J. Y. Cai, M. Sridhar, C. D. R. Easton, T. Gengenbach, J. McDonnell, W. Humphries and S. Lucas, Carbon, 52, 520 (2013).

    Article  CAS  Google Scholar 

  6. H. Kim, J. Lee, B. Park, J.-H. Sa, A. Jung, T. Kim, J. Park, W. Hwang and K.-H. Lee, Korean J. Chem. Eng., 33, 299 (2015).

    Article  Google Scholar 

  7. I. W. Chen, R. Liang, H. Zhao, B. Wang and C. Zhang, Nanotechnology, 22, 485708 (2011).

    Article  Google Scholar 

  8. S.-i. Ogino, Y. Sato, G. Yamamoto, K. Sasamori, H. Kimura, T. Hashida, K. Motomiya, B. Jeyadevan and K. Tohji, J. Phys. Chem. B, 110, 23159 (2006).

    Article  CAS  Google Scholar 

  9. A. Satti, A. Perret, J. E. McCarthy and Y. K. Gun’ko, J. Mater. Chem., 20, 7941 (2010).

    Article  CAS  Google Scholar 

  10. M. De Marco, F. Markoulidis, R. Menzel, S. M. Bawaked, M. Mokhtar, S. A. Al-Thabaiti, S. N. Basahel and M. S. P. Shaffer, J. Mater. Chem. A, 4, 5385 (2016).

    Article  CAS  Google Scholar 

  11. H. Nie, W. Guo, Y. Yuan, Z. Dou, Z. Shi, Z. Liu, H. Wang and Y. Liu, Nano Res., 3, 103 (2010).

    Article  CAS  Google Scholar 

  12. M. Biso, A. Ansaldo, D. N. Futaba, K. Hata and D. Ricci, Carbon, 49, 2253 (2011).

    Article  CAS  Google Scholar 

  13. C. M. Homenick, H. Sheardown and A. Adronov, J. Mater. Chem., 20, 2887 (2010).

    Article  CAS  Google Scholar 

  14. Y. Zhang, A. A. Broekhuis, M. C. A. Stuart, T. Fernandez Landaluce, D. Fausti, P. Rudolf and F. Picchioni, Macromolecules, 41, 6141 (2008).

    Article  CAS  Google Scholar 

  15. M. B. Jakubinek, B. Ashrafi, J. Guan, M. B. Johnson, M. A. White and B. Simard, RSC Adv., 4, 57564 (2014).

    Article  CAS  Google Scholar 

  16. M. S. Shaffer, X. Fan and A. Windle, Carbon, 36, 1603 (1998).

    Article  CAS  Google Scholar 

  17. T. G. Ros, A. J. Van Dillen, J. W. Geus and D. C. Koningsberger, Chem. Eur. J., 8, 1151 (2002).

    Article  CAS  Google Scholar 

  18. R. F. Hamilton, N. Wu, C. Xiang, M. Li, F. Yang, M. Wolfarth, D. W. Porter and A. Holian, Part. Fibre. Toxicol., 11, 1 (2014).

    Article  Google Scholar 

  19. S. Zalipsky, C. Gilon and A. Zilkha, Eur. Polym. J., 19, 1177 (1983).

    Article  CAS  Google Scholar 

  20. J. Zhu, H. Peng, F. Rodriguez-Macias, J. L. Margrave, V. N. Khabashesku, A. M. Imam, K. Lozano and E. V. Barrera, Adv. Funct. Mater., 14, 643 (2004).

    Article  CAS  Google Scholar 

  21. J. Zhu, J. Kim, H. Peng, J. L. Margrave, V. N. Khabashesku and E. V. Barrera, Nano Lett., 3, 1107 (2003).

    Article  CAS  Google Scholar 

  22. C. Jiang, A. Saha, C. Xiang, C. C. Young, J. M. Tour, M. Pasquali and A. A. Martí, ACS Nano, 7, 4503 (2013).

    Article  CAS  Google Scholar 

  23. R. A. DiLeo, B. J. Landi and R. P. Raffaelle, J. Appl. Phys., 101, 064307 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegeun Lee.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Im, YO., Lee, SH., Yu, SU. et al. Quantitative analysis of carbon nanotube cross-linking reactions. Korean J. Chem. Eng. 34, 898–902 (2017). https://doi.org/10.1007/s11814-016-0309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0309-x

Keywords

Navigation