Skip to main content
Log in

Low temperature synthesis of Manganese tungstate nanoflowers with antibacterial potential: Future material for water purification

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Pure water is the fundamental requisite for human life. The water has been recycled naturally but not in an adequate amount for consumption. Nanotechnology with extraordinary applications provides competent ways for the decontamination of contaminated water. In the present study MnWO4 nanoflowers endorsed with inherent antibacterial activity were successfully synthesized by facile hydrothermal approach. XRD, SEM, EDX spectroscopy and UVDRS were used to characterize the as-synthesized nanoflowers. Gram negative Escherichia coli ATCC 52922 bacterium was used as model organism to test antibacterial activity of as-synthesized MnWO4 nanoflowers. This study was conducted to optimize minimum concentration of MnWO4 nanoflowers and maximum contact time required to achieve complete inactivation of bacteria present in contaminated water. Minimum inhibitory concentration (MIC) of MnWO4 nanoflowers was found to be 10 μg/ml. The assessment and interpretation of bacterial viability was done using dual fluorescent staining. The synthesized 3D-nanoflowers were found as potent bactericides. Thus, MnWO4 nanoflowers emerged to be very good future material for disinfection of biological pollutants present in the contaminated water reservoirs and as an anti-biofouling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Khorzughy, T. Eslamkish, F. D. Ardejani and M. R. Heydartaemeh, Korean J. Chem. Eng., 32, 88 (2015).

    Article  CAS  Google Scholar 

  2. Y. Choi, B. Park and D. K. Cha, Korean J. Chem. Eng., 32, 1812 (2015).

    Article  CAS  Google Scholar 

  3. S. Singha and U. Sarkar, Korean J. Chem. Eng., 32, 20 (2015).

    Article  CAS  Google Scholar 

  4. B. A. Feiz and S. Aber, Korean J. Chem. Eng., 32, 2014 (2015).

    Article  Google Scholar 

  5. A. Prüss-Üstün, R. Bos, F. Gore and J. Bartram, World Health Organization (2008).

    Google Scholar 

  6. W. Kim, B. G. Ryu, S. Kim, S. W. Heo, D. H. Kim, J. Kim, H. Jo, J. H. Kwon and J. W. Yang, Korean J. Chem. Eng., 31, 381 (2014).

    Article  CAS  Google Scholar 

  7. S. Pedley and K. Pond, World Health Organization (2003).

    Google Scholar 

  8. W. H. Organization, World Health Organization (2004).

    Google Scholar 

  9. G. A. Boorman, Environ. Health Perspect., 107, 207 (1999).

    Article  CAS  Google Scholar 

  10. Y.-T. Woo, D. Lai, J. L. McLain, M. K. Manibusan and V. Dellarco, Environ. Health Perspect., 110, 75 (2002).

    Article  CAS  Google Scholar 

  11. S. D. Richardson, TrAC Trends Anal. Chem., 22, 666 (2003).

    Article  CAS  Google Scholar 

  12. A. Kamari, W. W. Ngah, M. Chong and M. Cheah, Desalination, 249, 1180 (2009).

    Article  CAS  Google Scholar 

  13. R. L. Kalyani, J. Venkatraju, P. Kollu, N. H. Rao and S. V. N. Pammi, Korean J. Chem. Eng., 32, 911 (2015).

    Article  CAS  Google Scholar 

  14. S. Boulila, H. Oudadesse, H. Elfeki, R. Kallel, B. Lefeuvre, M. Mabrouk, S. Tounsi, D. Mhalla, A. Mostafa and K. Chaabouni, Korean J. Chem. Eng., 33, 1659 (2016).

    Article  CAS  Google Scholar 

  15. N. Savage and M. S. Diallo, J. Nanopart. Res., 7, 331 (2005).

    Article  CAS  Google Scholar 

  16. D. K. Tiwari, J. Behari and P. Sen, World Appl. Sci. J., 3, 417 (2008).

    Google Scholar 

  17. V. Felea, P. Lemmens, S. Yasin, S. Zherlitsyn, K. Choi, C. Lin and C. Payen, J Phys.: Cond. Matt., 23, 216001 (2011).

    CAS  Google Scholar 

  18. H. Ehrenberg, H. Weitzel, R. Theissmann, H. Fuess, L. Rodriguez-Martinez and S. Welzel, Physica B: Cond. Matt., 276, 644 (2000).

    Article  Google Scholar 

  19. G. Lautenschläger, H. Weitzel, T. Vogt, R. Hock, A. Böhm, M. Bonnet and H. Fuess, Phys. Rev. B, 48, 6087 (1993).

    Article  Google Scholar 

  20. L. H. Hoang, N. Hien, W. Choi, Y. Lee, K. Taniguchi, T. Arima, S. Yoon, X. Chen and I. S. Yang, J. Raman Spectrosc., 41, 1005 (2010).

    Article  CAS  Google Scholar 

  21. H. Zhou, Y. Yiu, M. Aronson and S. S. Wong, J. Solid State Chem., 181, 1539 (2008).

    Article  CAS  Google Scholar 

  22. H. He, J. Huang, L. Cao and J. Wu, Desalination, 252, 66 (2010).

    Article  CAS  Google Scholar 

  23. S. Thongtem, S. Wannapop, A. Phuruangrat and T. Thongtem, Mater. Lett., 63, 833 (2009).

    Article  CAS  Google Scholar 

  24. Y. Xing, S. Song, J. Feng, Y. Lei, M. Li and H. Zhang, Solid State Sci., 10, 1299 (2008).

    Article  CAS  Google Scholar 

  25. W. Qu and J.-U. Meyer, Sensors Actuat. B: Chem., 40, 175 (1997).

    Article  CAS  Google Scholar 

  26. S. M. Montemayor and A. F. Fuentes, Ceram. Int., 30, 393 (2004).

    Article  CAS  Google Scholar 

  27. S.-J. Chen, X.-T. Chen, Z. Xue, J.-H. Zhou, J. Li, J.-M. Hong and X.-Z. You, J. Mat. Chem., 13, 1132 (2003).

    Article  CAS  Google Scholar 

  28. O. Akhavan and E. Ghaderi, Acs Nano, 4, 5731 (2010).

    Article  CAS  Google Scholar 

  29. T. Amna, M. S. Hassan, D. R. Pandeya, M.-S. Khil and I. Hwang, Appl. Microbiol. Biotechnol., 97, 4523 (2013).

    Article  CAS  Google Scholar 

  30. M. Oves, M. Arshad, M. S. Khan, A. S. Ahmed, A. Azam and I. M. Ismail, J. Saudi Chem. Soc., 19, 581 (2015).

    Article  Google Scholar 

  31. M. Almeida, L. Cavalcante, J. A. Varela, M. S. Li and E. Longo, Adv. Powder Technol., 23, 124 (2012).

    Article  CAS  Google Scholar 

  32. Y. Chang, S.-T. Yang, J.-H. Liu, E. Dong, Y. Wang, A. Cao, Y. Liu and H. Wang, Toxicol. Lett., 200, 201 (2011).

    Article  CAS  Google Scholar 

  33. S. Chen, Y. Guo, S. Chen, H. Yu, Z. Ge, X. Zhang, P. Zhang and J. Tang, J. Mater. Chem., 22, 9092 (2012).

    Article  CAS  Google Scholar 

  34. M. S. Hassan, T. Amna, D. R. Pandeya, A. Hamza, Y. Y. Bing, H.-C. Kim and M.-S. Khil, Appl. Microbiol. Biotechnol., 95, 213 (2012).

    Article  CAS  Google Scholar 

  35. P. K. Stoimenov, R. L. Klinger, G. L. Marchin and K. J. Klabunde, Langmuir, 18, 6679 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touseef Amna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amina, M., Amna, T., Hassan, M.S. et al. Low temperature synthesis of Manganese tungstate nanoflowers with antibacterial potential: Future material for water purification. Korean J. Chem. Eng. 33, 3169–3174 (2016). https://doi.org/10.1007/s11814-016-0196-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0196-1

Keywords

Navigation