Skip to main content
Log in

Parametric study of pyrolysis and steam gasification of rice straw in presence of K2CO3

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A parametric study of pyrolysis and steam gasification of rice straw (RS) was performed to investigate the effect of the presence of K2CO3 on the behavior of gas evolution, gas component distribution, pyrolysis/gasification reactivity, the quality and volume of synthetic gas. During pyrolysis, with the increase in K2CO3 content in RS (i) the instantaneous CO2 concentration was increased while CO concentration was relatively stable; (ii) the yield of CO2 and H2 increased on the cost of CH4. During steam gasification of RS, with the increase in K2CO3 content in RS (i) the instantaneous concentration of CO2 and H2 increased while instantaneous concentration of CO and CH4 decreased; (ii) the yield of CO2 and H2 production and total yield increased; and (iii) yield of CO and CH4 production followed the order: 9% K2CO3 RS<6% K2CO3 RS<raw RS<3% K2CO3 RS<water-leached RS. Water-leached RS showed the highest pyrolysis reactivity, while stream gasification reactivity was proportional to K2CO3 content in RS. The results of this study reveal that the presence of K2CO3 during pyrolysis and steam gasification of RS effectively improves production of H2 rich gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Muthayya, J.D. Sugimoto, S. Montgomery and G. F. Maberly, Annals of the New York Academy of Sciences, 1324(1), 7 (2014).

    Article  Google Scholar 

  2. K. L. Kadam, L. H. Forrest and W. A. Jacobson, Biomass and Bioenergy, 18(5), 369 (2000).

    Article  CAS  Google Scholar 

  3. S. Nizamuddin, N.M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu and P. Ganesan, Fuel, 163, 88 (2016)

    Article  CAS  Google Scholar 

  4. S. Nizamuddin, N. S. Jayakumar, J.N. Sahu, P. Ganesan, A.W. Bhutto and N.M. Mubarak, Korean J. Chem. Eng., 32, 1789 (2015).

    Article  CAS  Google Scholar 

  5. S. Chakma, A. Ranjan, H. Choudhury, P. Dikshit and V. Moholkar, Clean Technologies and Environmental Policy, 18(2), 373 (2016).

    Article  CAS  Google Scholar 

  6. M. Savaliya, B. Dhorajiya and B. Dholakiya, Res. Chem. Intermed., 41(2), 475 (2015).

    Article  CAS  Google Scholar 

  7. S. Heidenreich and P.U. Foscolo, Prog. Energy Combust. Sci., 46, 72 (2015).

    Article  Google Scholar 

  8. J. Tang and J. Wang, Fuel Process. Technol., 142, 34 (2016).

    Article  CAS  Google Scholar 

  9. J. Wannapeera, N. Worasuwannarak and S. Pipatmanomai, Songklanakarin Journal of Science and Technology, 30(3), 393 (2008).

    Google Scholar 

  10. L. Jiang, S. Hu, Y. Wang, S. Su, L. Sun, B. Xu, L. He and J. Xiang, Int. J. Hydrogen Energy, 40(45), 15460 (2015).

    Article  CAS  Google Scholar 

  11. M.A. Hamad, A.M. Radwan, D.A. Heggo and T. Moustafa, Renewable Energy, 85, 1290 (2016).

    Article  CAS  Google Scholar 

  12. S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan, J. Sahu, N. Mubarak and S. Nizamuddin, Bioresour. Technol., 178, 65 (2015).

    Article  CAS  Google Scholar 

  13. H. A. Baloch, T. Yang, R. Li, S. Nizamuddin, X. Kai and A.W. Bhutto, Clean Technologies and Environmental Policy, 18(4), 1031 (2016).

    Article  CAS  Google Scholar 

  14. C. Franco, F. Pinto, I. Gulyurtlu and I. Cabrita, Fuel, 82(7), 835 (2003).

    Article  CAS  Google Scholar 

  15. T. Ahmed, M. Ahmad, H. Lam and S. Yusup, Clean Technologies and Environmental Policy, 15(3), 513 (2013).

    Article  CAS  Google Scholar 

  16. A.W. Bhutto, A. A. Bazmi and G. Zahedi, Progress in Energy and Combustion Science, 39(1), 189 (2013).

    Article  CAS  Google Scholar 

  17. N. Sabzoi, E. K. Yong, N. S. Jayakumar, J. N. Sahu, P. Ganesan, N. M. Mubarak, S. A. Mazari, Journal of Oil Palm Research, 47(4), 339 (2015).

    Google Scholar 

  18. L.K. Mudge, E. G. Baker, D. H. Mitchell and M.D. Brown, J. Solar Energy Eng., 107(1), 88 (1985).

    Article  CAS  Google Scholar 

  19. R. J. Lang, Fuel, 65(10), 1324 (1986).

    Article  CAS  Google Scholar 

  20. T.-c. Li, Y.-j. Yan and Z.-w. Ren, Fuel Sci. Technol. Int., 14(7), 879 (1996).

    Article  CAS  Google Scholar 

  21. A. Karimi and M.R. Gray, Fuel, 90(1), 120 (2011).

    Article  CAS  Google Scholar 

  22. D.W. McKee, Fuel, 62(2), 170 (1983).

    Article  CAS  Google Scholar 

  23. B. J. Wood. and K. M. Sancier, Catal. Rev., 26(2), 233 (1984).

    Article  CAS  Google Scholar 

  24. D.W. McKee, Chemistry and Physics of Carbon, 16, 1 (1981).

    CAS  Google Scholar 

  25. J. Wang, M. Jiang, Y. Yao, Y. Zhang and J. Cao, Fuel, 88(9), 1572 (2009).

    Article  CAS  Google Scholar 

  26. X. Wu, J. Tang and J. Wang, Fuel, 165, 59 (2016).

    Article  CAS  Google Scholar 

  27. D. Sutton, B. Kelleher and J.R. H. Ross, Fuel Process. Technol., 73(3), 155 (2001).

    Article  CAS  Google Scholar 

  28. M. P. Aznar, M.A. Caballero, J. A. Sancho and E. Francésm, Fuel Process. Technol., 87(5), 409 (2006).

    Article  CAS  Google Scholar 

  29. Y. Tada and A. Yasunishi, KAGAKU KOGAKU RONBUNSHU, 14(4), 552 (1988).

    Article  CAS  Google Scholar 

  30. H. Tan, S. Wang, Z. Luo, C. Yu and K. Cen, Journal of Engineering Thermophysics, 26(5), 742 (2005).

    CAS  Google Scholar 

  31. C. Yang, J. Yao, X. Lu, X. Yang and W. Lin, Acta Energiae Solars Sinica, 27(5), 496 (2006).

    CAS  Google Scholar 

  32. M. Nishimura, S. Iwasaki and M. Horio, Journal of the Taiwan Institute of Chemical Engineers, 40(6), 630 (2009).

    Article  CAS  Google Scholar 

  33. Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu and W. Pan, Energy Fuels, 22(3), 1720 (2008).

    Article  CAS  Google Scholar 

  34. A. Abuadala and I. Dincer, Thermochim. Acta, 507-508, 127 (2010).

    Article  CAS  Google Scholar 

  35. S. Karimipour, R. Gerspacher, R. Gupta and R. J. Spiteri, Fuel, 103, 308 (2013).

    Article  CAS  Google Scholar 

  36. N. Canabarro, J. Soares, C. Anchieta, C. Kelling and M. Mazutti, Sustainable Chemical Processes, 1(1), 22 (2013).

    Article  Google Scholar 

  37. B.M. Jenkins, R.R. Bakker and J. B. Wei, Biomass Bioenergy, 10(4), 177 (1996).

    Article  CAS  Google Scholar 

  38. Y. Li, H. Yang, J. Hu, X. Wang and H. Chen, Fuel, 117(Part B), 1174 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Humair Ahmed Baloch or Abdul Waheed Bhutto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baloch, H.A., Yang, T., Sun, H. et al. Parametric study of pyrolysis and steam gasification of rice straw in presence of K2CO3 . Korean J. Chem. Eng. 33, 2567–2574 (2016). https://doi.org/10.1007/s11814-016-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-016-0121-7

Keywords

Navigation