Korean Journal of Chemical Engineering

, Volume 33, Issue 9, pp 2567–2574 | Cite as

Parametric study of pyrolysis and steam gasification of rice straw in presence of K2CO3

  • Humair Ahmed Baloch
  • Tianhua Yang
  • Haipeng Sun
  • Jie Li
  • Sabzoi Nizamuddin
  • Rundong Li
  • Zhanguo Kou
  • Yang Sun
  • Abdul Waheed Bhutto
Energy

Abstract

A parametric study of pyrolysis and steam gasification of rice straw (RS) was performed to investigate the effect of the presence of K2CO3 on the behavior of gas evolution, gas component distribution, pyrolysis/gasification reactivity, the quality and volume of synthetic gas. During pyrolysis, with the increase in K2CO3 content in RS (i) the instantaneous CO2 concentration was increased while CO concentration was relatively stable; (ii) the yield of CO2 and H2 increased on the cost of CH4. During steam gasification of RS, with the increase in K2CO3 content in RS (i) the instantaneous concentration of CO2 and H2 increased while instantaneous concentration of CO and CH4 decreased; (ii) the yield of CO2 and H2 production and total yield increased; and (iii) yield of CO and CH4 production followed the order: 9% K2CO3 RS<6% K2CO3 RS<raw RS<3% K2CO3 RS<water-leached RS. Water-leached RS showed the highest pyrolysis reactivity, while stream gasification reactivity was proportional to K2CO3 content in RS. The results of this study reveal that the presence of K2CO3 during pyrolysis and steam gasification of RS effectively improves production of H2 rich gas.

Keywords

Pyrolysis Steam Gasification Biomass Rice Straw K2CO3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Muthayya, J.D. Sugimoto, S. Montgomery and G. F. Maberly, Annals of the New York Academy of Sciences, 1324(1), 7 (2014).CrossRefGoogle Scholar
  2. 2.
    K. L. Kadam, L. H. Forrest and W. A. Jacobson, Biomass and Bioenergy, 18(5), 369 (2000).CrossRefGoogle Scholar
  3. 3.
    S. Nizamuddin, N.M. Mubarak, M. Tiripathi, N. S. Jayakumar, J. N. Sahu and P. Ganesan, Fuel, 163, 88 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Nizamuddin, N. S. Jayakumar, J.N. Sahu, P. Ganesan, A.W. Bhutto and N.M. Mubarak, Korean J. Chem. Eng., 32, 1789 (2015).CrossRefGoogle Scholar
  5. 5.
    S. Chakma, A. Ranjan, H. Choudhury, P. Dikshit and V. Moholkar, Clean Technologies and Environmental Policy, 18(2), 373 (2016).CrossRefGoogle Scholar
  6. 6.
    M. Savaliya, B. Dhorajiya and B. Dholakiya, Res. Chem. Intermed., 41(2), 475 (2015).CrossRefGoogle Scholar
  7. 7.
    S. Heidenreich and P.U. Foscolo, Prog. Energy Combust. Sci., 46, 72 (2015).CrossRefGoogle Scholar
  8. 8.
    J. Tang and J. Wang, Fuel Process. Technol., 142, 34 (2016).CrossRefGoogle Scholar
  9. 9.
    J. Wannapeera, N. Worasuwannarak and S. Pipatmanomai, Songklanakarin Journal of Science and Technology, 30(3), 393 (2008).Google Scholar
  10. 10.
    L. Jiang, S. Hu, Y. Wang, S. Su, L. Sun, B. Xu, L. He and J. Xiang, Int. J. Hydrogen Energy, 40(45), 15460 (2015).CrossRefGoogle Scholar
  11. 11.
    M.A. Hamad, A.M. Radwan, D.A. Heggo and T. Moustafa, Renewable Energy, 85, 1290 (2016).CrossRefGoogle Scholar
  12. 12.
    S. Thangalazhy-Gopakumar, W.M.A. Al-Nadheri, D. Jegarajan, J. Sahu, N. Mubarak and S. Nizamuddin, Bioresour. Technol., 178, 65 (2015).CrossRefGoogle Scholar
  13. 13.
    H. A. Baloch, T. Yang, R. Li, S. Nizamuddin, X. Kai and A.W. Bhutto, Clean Technologies and Environmental Policy, 18(4), 1031 (2016).CrossRefGoogle Scholar
  14. 14.
    C. Franco, F. Pinto, I. Gulyurtlu and I. Cabrita, Fuel, 82(7), 835 (2003).CrossRefGoogle Scholar
  15. 15.
    T. Ahmed, M. Ahmad, H. Lam and S. Yusup, Clean Technologies and Environmental Policy, 15(3), 513 (2013).CrossRefGoogle Scholar
  16. 16.
    A.W. Bhutto, A. A. Bazmi and G. Zahedi, Progress in Energy and Combustion Science, 39(1), 189 (2013).CrossRefGoogle Scholar
  17. 17.
    N. Sabzoi, E. K. Yong, N. S. Jayakumar, J. N. Sahu, P. Ganesan, N. M. Mubarak, S. A. Mazari, Journal of Oil Palm Research, 47(4), 339 (2015).Google Scholar
  18. 18.
    L.K. Mudge, E. G. Baker, D. H. Mitchell and M.D. Brown, J. Solar Energy Eng., 107(1), 88 (1985).CrossRefGoogle Scholar
  19. 19.
    R. J. Lang, Fuel, 65(10), 1324 (1986).CrossRefGoogle Scholar
  20. 20.
    T.-c. Li, Y.-j. Yan and Z.-w. Ren, Fuel Sci. Technol. Int., 14(7), 879 (1996).CrossRefGoogle Scholar
  21. 21.
    A. Karimi and M.R. Gray, Fuel, 90(1), 120 (2011).CrossRefGoogle Scholar
  22. 22.
    D.W. McKee, Fuel, 62(2), 170 (1983).CrossRefGoogle Scholar
  23. 23.
    B. J. Wood. and K. M. Sancier, Catal. Rev., 26(2), 233 (1984).CrossRefGoogle Scholar
  24. 24.
    D.W. McKee, Chemistry and Physics of Carbon, 16, 1 (1981).Google Scholar
  25. 25.
    J. Wang, M. Jiang, Y. Yao, Y. Zhang and J. Cao, Fuel, 88(9), 1572 (2009).CrossRefGoogle Scholar
  26. 26.
    X. Wu, J. Tang and J. Wang, Fuel, 165, 59 (2016).CrossRefGoogle Scholar
  27. 27.
    D. Sutton, B. Kelleher and J.R. H. Ross, Fuel Process. Technol., 73(3), 155 (2001).CrossRefGoogle Scholar
  28. 28.
    M. P. Aznar, M.A. Caballero, J. A. Sancho and E. Francésm, Fuel Process. Technol., 87(5), 409 (2006).CrossRefGoogle Scholar
  29. 29.
    Y. Tada and A. Yasunishi, KAGAKU KOGAKU RONBUNSHU, 14(4), 552 (1988).CrossRefGoogle Scholar
  30. 30.
    H. Tan, S. Wang, Z. Luo, C. Yu and K. Cen, Journal of Engineering Thermophysics, 26(5), 742 (2005).Google Scholar
  31. 31.
    C. Yang, J. Yao, X. Lu, X. Yang and W. Lin, Acta Energiae Solars Sinica, 27(5), 496 (2006).Google Scholar
  32. 32.
    M. Nishimura, S. Iwasaki and M. Horio, Journal of the Taiwan Institute of Chemical Engineers, 40(6), 630 (2009).CrossRefGoogle Scholar
  33. 33.
    Y. Cao, Z. Gao, J. Jin, H. Zhou, M. Cohron, H. Zhao, H. Liu and W. Pan, Energy Fuels, 22(3), 1720 (2008).CrossRefGoogle Scholar
  34. 34.
    A. Abuadala and I. Dincer, Thermochim. Acta, 507-508, 127 (2010).CrossRefGoogle Scholar
  35. 35.
    S. Karimipour, R. Gerspacher, R. Gupta and R. J. Spiteri, Fuel, 103, 308 (2013).CrossRefGoogle Scholar
  36. 36.
    N. Canabarro, J. Soares, C. Anchieta, C. Kelling and M. Mazutti, Sustainable Chemical Processes, 1(1), 22 (2013).CrossRefGoogle Scholar
  37. 37.
    B.M. Jenkins, R.R. Bakker and J. B. Wei, Biomass Bioenergy, 10(4), 177 (1996).CrossRefGoogle Scholar
  38. 38.
    Y. Li, H. Yang, J. Hu, X. Wang and H. Chen, Fuel, 117(Part B), 1174 (2014).CrossRefGoogle Scholar

Copyright information

© Korean Institute of Chemical Engineers, Seoul, Korea 2016

Authors and Affiliations

  • Humair Ahmed Baloch
    • 1
    • 2
  • Tianhua Yang
    • 1
  • Haipeng Sun
    • 1
  • Jie Li
    • 1
  • Sabzoi Nizamuddin
    • 2
  • Rundong Li
    • 1
  • Zhanguo Kou
    • 1
  • Yang Sun
    • 1
  • Abdul Waheed Bhutto
    • 2
  1. 1.Key Laboratory of Clean Energy of Liaoning Province, College of Energy and EnvironmentShenyang Aerospace UniversityLiaoningP. R. China
  2. 2.Department of Chemical EngineeringDawood University of Engineering and TechnologyKarachiPakistan

Personalised recommendations