Skip to main content

Advertisement

Log in

Effect of combined slow pyrolysis and steam gasification of sugarcane bagasse on hydrogen generation

  • Energy
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present work aims at improving the generation of H2 from sugarcane bagasse in steam gasification process by incorporating slow pyrolysis technique. As a bench scale study, slow pyrolysis of sugarcane bagasse is performed at various pyrolysis temperature (350, 400, 450, 500 and 550 °C) and feed particle size (90<D P <212, 212< D P <355, 355<D P <500, 500<D P <850 µm) to determine effective conditions of char generation. In the combined process (slow pyrolysis of biomass followed by steam gasification of char), first slow pyrolysis is carried out at the effective conditions (pyrolysis temperature and particle size) of char generation (determined from bench scale study) and steam gasification is at varying gasification temperature (600, 650, 700, 750 and 800 °C) and steam to biomass (S/B) ratio (1, 2, 3, 4, 5 and 6) to determine the effective conditions of H2 generation. The effect of temperature and S/B on gas product composition and overall product gas volume was also investigated. At effective conditions (gasification temperature and S/B) of H2 generation, individual slow pyrolysis and steam gasification were also experimented to evaluate the performance of combined process. The effective condition of H2 generation in combined process was found to be 800 °C (gasification temperature) and 5 (S/B), respectively. The combined process produced 35.90% and 23.60% more gas volume (overall) than slow pyrolysis and steam gasification process, respectively. With respect to H2 composition, the combined process generated 72.37% more than slow pyrolysis and 17.91% more than steam gasification process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Hordeski, Alternative fuels: The future of hydrogen, Second. Lilburn, GA, USA, The Fairmont Press, Inc. (2008).

    Google Scholar 

  2. S. M. Raj, S. Talluri and L.P. Christopher, BioEnergy Res., 5(2), 515 (2012).

    Article  CAS  Google Scholar 

  3. S. Su, W. Li, Z. Bai, H. Xiang and J. Bai, Int. J. Hydrogen Energy, 35(10), 4459 (2010).

    Article  CAS  Google Scholar 

  4. S. Sun, Y. Zhao, F. Su and F. Ling, Korean J. Chem. Eng., 26(2), 528 (2009).

    Article  CAS  Google Scholar 

  5. M.K. Cohce, I. Dincer and M.A. Rosen, Int. J. Hydrogen Energy, 35(10), 4970 (2010).

    Article  CAS  Google Scholar 

  6. P. Kuchonthara, B. Puttasawat, P. Piumsomboon, L. Mekasut and T. Vitidsant, Korean J. Chem. Eng., 29(11), 1525 (2012).

    Article  CAS  Google Scholar 

  7. M.-J. Jeon, S. J. Choi, K.-S. Yoo, C. Ryu, S. H. Park, J. M. Lee, J.-K. Jeon, Y.-K. Park and S. Kim, Korean J. Chem. Eng., 28(2), 497 (2011).

    Article  CAS  Google Scholar 

  8. Z.M.A. Bundhoo, A. Mudhoo and R. Mohee, J. Environ. Sci. Sustain., 1(1), 1 (2013).

    Google Scholar 

  9. M. Balat, Energy Sources, Part A Recover. Util. Environ. Eff., 33(7), 674 (2011).

    Article  CAS  Google Scholar 

  10. Y. Lu, L. Guo, X. Zhang and C. Ji, Int. J. Hydrogen Energy, 37(4), 3177 (2012).

    Article  Google Scholar 

  11. P. Parthasarathy and K.N. Sheeba, Int. J. Energy Res., 39(2), 147 (2015).

    Article  Google Scholar 

  12. S. Wang, High-efficiency Separation of Bio-oil, in Biomass now-Sustianable growth and use, M.D. Matovic, Ed. Intech Open-Access Publisher, 401 (2013).

    Google Scholar 

  13. S. Czernik and A. V Bridgwater, Energy Fuels, 18(12), 590 (2004).

    Article  CAS  Google Scholar 

  14. S. Wang, Y. Gu, Q. Liu, Y. Yao, Z. Guo, Z. Luo and K. Cen, Fuel Process. Technol., 90(5), 738 (2009).

    Article  CAS  Google Scholar 

  15. S. Wang, X. Li, F. Zhang, Q. Cai, Y. Wang and Z. Luo, Int. J. Hydrogen Energy, 38(36), 16038 (2013).

    Article  CAS  Google Scholar 

  16. T.-H. Kwak, S. Lee, J.-W. Park, S. Maken, Y.D. Yoo and S.-H. Lee, Korean J. Chem. Eng., 23(6), 954 (2006).

    Article  CAS  Google Scholar 

  17. A. P. Eren, E. Onal, B.B. Uzun and N. Ozbay, Ind. Crops Prod., 26, 307 (2007).

    Article  Google Scholar 

  18. C. Fushimi, T. Wada and A. Tsutsumi, Biomass Bioenergy, 35(1), 179 (2010).

    Article  Google Scholar 

  19. M. K. Ko, W. Lee, S. Kim, K. Lee and H. Chun, Korean J. Chem. Eng., 18(6), 961 (2001).

    Article  CAS  Google Scholar 

  20. K. Chaiwong, T. Kiatsiriroat, N. Vorayos and C. Thararax, Maejo Int. J. Sci. Technol., 6(2), 186 (2012).

    CAS  Google Scholar 

  21. L. Fagernas, E. Kuoppala, K. Tiilikkala and A. Oasmaa, Energy Fuels, 26, 1275 (2012).

    Article  CAS  Google Scholar 

  22. K. Umeki, Y. Son, T. Namioka and K. Yoshikawa, J. Environ. Eng., 4(1), 211 (2009).

    Article  Google Scholar 

  23. L. Wei, S. Xu, L. Zhang, C. Liu, H. Zhu and S. Liu, Int. J. Hydrogen Energy, 32, 24 (2006).

    Article  CAS  Google Scholar 

  24. S.T. Chaudhari, A.K. Dalai and N.N. Bakhshi, Energy Fuels, 17, 1062 (2003).

    Article  CAS  Google Scholar 

  25. S.T. Chaudhari, S.K. Bej, N.N. Bakhshi and A.K. Dalai, Energy Fuels, 15, 736 (2001).

    Article  CAS  Google Scholar 

  26. S. Lv, Q. Yu, X. Zhuang, Z. Yuan, W. Wang, Q. Wang, W. Qi and X. Tan, BioEnergy Res., 6, 1128 (2013).

    Article  CAS  Google Scholar 

  27. A. Aradhey, India Sugar Annual 2012, 2012. [Online]. Available: http://gain.fas.usda.gov/RecentGAIN Publications/SugarAnnual_New Delhi_India_4-19-2012.pdf.

  28. S. E. Lingle and J. L. Thomson, BioEnergy Res., 5, 168 (2012).

    Article  CAS  Google Scholar 

  29. A.P. De Souza, A. Grandis, D.C.C. Leite and M.S. Buckeridge, BioEnergy Res., 7, 24 (2014).

    Article  CAS  Google Scholar 

  30. Energy statistics 2013, Central Statistics Office. National Statistical Organisation. Ministry of Statistics and Programme Implementation, 2013. [Online]. Available: http://mospi.nic.in/mospi_new/upload/Energy_Statistics_2013.pdf. [Accessed: 04-Aug-2013].

  31. L. Lin, R. Yan, Y. Liu and W. Jiang, Bioresour. Technol., 101(21), 8217 (2010).

    Google Scholar 

  32. A.K. Bledzki, A. A. Mamun and J. Volk, Compos. Part A, 41(4), 480 (2010).

    Article  Google Scholar 

  33. M. Carrier, T. Hugo, J. Gorgens and H. Knoetze, J. Anal. Appl. Pyrolysis, 90(1), 18 (2011).

    Article  CAS  Google Scholar 

  34. ASTM D 1946-90. Standard practice for analysis of reformed gas by gas chromatography.

  35. GC data sheet. Shimadzu Gas Chromatograph. Analysis of Inert Inorganic Gases (2010).

    Google Scholar 

  36. Packed Column GC Application Guide-Supelco Bulletion 890A.

  37. Validation of Chromatographic Methods-Reviewer Guidance-Centre for drug evaluation and research (CDER) (1994).

  38. A. Demirbas, Fuel Process. Technol., 88, 591 (2007).

    Article  CAS  Google Scholar 

  39. P. Weerachanchai, C. Tangsathitkulchai and M. Tangsathitkulchai, Korean J. Chem. Eng., 28(12), 2262 (2011).

    Article  CAS  Google Scholar 

  40. B. Acharya, A. Dutta and P. Basu, Int. J. Hydrogen Energy, 35(4), 1582 (2010).

    Article  CAS  Google Scholar 

  41. C. Franco, F. Pinto, I. Gulyurtlu and I. Cabrita, Fuel, 82, 835 (2003).

    Article  CAS  Google Scholar 

  42. A. Inayat, M. M. Ahmad, S. Yusup, M. Ibrahim and A. Mutalib, Energies, 3, 1472 (2010).

    Article  CAS  Google Scholar 

  43. B. Moghtaderi, Fuel, 86(15), 2422 (2007).

    Article  CAS  Google Scholar 

  44. P. M. Lv, Z. H. Xiong, J. Chang, C. Z. Wu, Y. Chen and J. X. Zhu, Bioresour. Technol., 95(1), 95 (2004).

    Article  CAS  Google Scholar 

  45. A. Khor, C. Ryu, Y. Yang, V.N. Sharifi and J. Swithenbank, Clean Hydrogen Production via Novel Steam-Air Gasification of Biomass, in Proceedings of the 16th World Hydrogen Energy Conference (WHEC), 1 (2006).

    Google Scholar 

  46. Z. A. B. Z. Alauddin, P. Lahijani, M. Mohammadi and A. R. Mohamed, Renew. Sustain. Energy Rev., 14(9), 2852 (2010).

    Article  CAS  Google Scholar 

  47. N. Gao, A. Li and C. Quan, Bioresour. Technol., 100(18), 4271 (2009).

    Article  CAS  Google Scholar 

  48. J. Li, Y. Yin, X. Zhang, J. Liu and R. Yan, Int. J. Hydrogen Energy, 34(22), 9108 (2009).

    Article  CAS  Google Scholar 

  49. N. Nipattummakul, I. I. Ahmed, S. Kerdsuwan and A. K. Gupta, Int. J. Hydrogen Energy, 35(21), 11738 (2010).

    Article  CAS  Google Scholar 

  50. S. Uçar and S. Karagöz, J. Anal. Appl. Pyrolysis, 84(2), 151 (2009).

    Article  Google Scholar 

  51. F. Yan, S. Luo, Z. Hu, B. Xiao and G. Cheng, Bioresour. Technol., 101(14), 5633 (2010).

    Article  CAS  Google Scholar 

  52. S. Rapagna, Biomass Bioenergy, 19, 187 (2000).

    Article  CAS  Google Scholar 

  53. S. Portofino, A. Donatelli, P. Iovane, C. Innella, R. Civita, M. Martino, D. A. Matera, A. Russo, G. Cornacchia and S. Galvagno, Waste Manag., 33(3), 672 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeba Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parthasarathy, P., Narayanan, S. Effect of combined slow pyrolysis and steam gasification of sugarcane bagasse on hydrogen generation. Korean J. Chem. Eng. 32, 2236–2246 (2015). https://doi.org/10.1007/s11814-015-0038-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0038-6

Keywords

Navigation