Skip to main content
Log in

Effect of conditions of air-lift type reactor work on cadmium adsorption

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We investigated cadmium sorption by activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. Experiments were conducted in an air-lift type reactor at the constant concentration of biosorbent reaching 5 d.m./dm3, at three flow rates: 0.1, 0.25 and 0.5 V/h, and at three concentrations of the inflowing cadmium solution: 10, 25 and 50mg/dm3. Analyses determined adsorption capacity of activated sludge immobilized in alginate as well as reactor’s work time depending on flow rate and initial concentration of the solution. Results achieved were described with the use of Thomas model. The highest adsorption capacity of the sorbent (determined from the Thomas model), i.e., 200.2 mg/g d.m. was obtained at inflowing solution concentration of 50 mg/dm3 and flow rate of 0.1 V/h, whereas the lowest one reached 53.69 mg/g d.m. at the respective values of 10 mg/dm3 and 0.1 V/h. Analyses were also carried out to determine the degree of biosorbent adsorption capacity utilization at the assumed effectiveness of cadmium removal — at the breakthrough point (C=0.05*C0) and at adsorption capacity depletion point (C-0.9*C0). The study demonstrated that the effectiveness of adsorption capacity utilization was influenced by both the concentration and flow rate of the inflowing solution. The highest degree of sorbent capacity utilization was noted at inflowing solution concentration of 50 mg/dm3 and flow rate of 0.1 V/h, whereas the lowest one at the respective values of 10 mg/dm3 and 0.1 V/h. The course of the process under dynamic conditions was evaluated using coefficients of tangent inclination — a, at point C/C0=½. A distinct tendency was demonstrated in changes of tangent slope a as affected by the initial concentration of cadmium and flow rate of the solution. The highest values of a coefficient were achieved at the flow rate of 0.1 V/h and initial cadmium concentration of 50 mg/dm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Singh, N. Gautam, A. Mishra and R. Gupta, Indian J. Pharmacology, 43(3), 246 (2011).

    Article  CAS  Google Scholar 

  2. M.P. Benavides, S. M. Gallego and M.L. Tomaro, Brazilian J. Plant Physiology, 17(1), 21 (2005).

    Article  CAS  Google Scholar 

  3. S. Clemens, Biochemie, 88(11), 1707 (2006).

    Article  CAS  Google Scholar 

  4. A. Kapoor, T. Viraraghavan and D.R. Cullimore, Bioresour. Technol., 70(1), 95 (1999).

    Article  CAS  Google Scholar 

  5. D. Chen and K. A. Ray, Chem. Eng. Sci., 56(4), 1561 (2001).

    Article  CAS  Google Scholar 

  6. J. Plaza Cazón, M. Viera, E. Donati and E. Guibal, J. Environ. Manage., 129, 423 (2013).

    Article  Google Scholar 

  7. H. K. Alluri, S. R. Ronda, V. S. Settalluri, J. S. Bondili, V. Suryanarayana and P. Venkateshwar, African J. Biotechnology, 6(25), 29 (2007).

    Google Scholar 

  8. M. Gopal, K. Pakshirajan and T. Swaminathan, Appl. Biochem. Biotechnol., 102.1–6, 227 (2002).

    Article  Google Scholar 

  9. G. Purna Chandra Rao, S. Satyaveni, A. Ramesh, K. Seshaiah, K. S. N. Murthy and N.V. Choudary. J. Environ. Manage., 81.3, 265 (2006).

    Article  CAS  Google Scholar 

  10. I. Zawierucha, C. Kozlowski and G. Malina, IAH Book Series: Selected Papers on Hydrogeology, 17, 79 (2012).

    Google Scholar 

  11. M. Kuczajowska-Zadrozna, E. Klimiuk and I. Wojnowska-Baryla, Polish J. of Environmental Studies, 13(2), 161 (2004).

    CAS  Google Scholar 

  12. B. Volesky, Hydrometallurgy, 59(2), 203 (2001).

    Article  CAS  Google Scholar 

  13. H. Baba, K. Tsuneyama, M. Yazaki, K. Nagata, T. Minamisaka, T. Tsuda, K. Nomoto, S. Hayashi, S. Miwa, T. Nakajima, Y. Nakanishi, K. Aoshima and J. Imura, Modern Pathology, 26(9),1228 (2013).

    Article  CAS  Google Scholar 

  14. V. N. H. Nguyen, R. Amal and D. Beydoun, Chem. Eng. Sci., 58(19), 4429 (2003).

    Article  CAS  Google Scholar 

  15. U. Farooq, J.A. Kozinski, M.A. Khan and M. Athar, Bioresour. Technol., 101(14), 5043 (2010).

    Article  CAS  Google Scholar 

  16. T. J. Butter, L.M. Evison, I.C. Hancock and F. S. Holland, Water Sci. Technol., 38(6), 279 (1998).

    Article  CAS  Google Scholar 

  17. A. Mudhoo, V.K. Garg and S. Wang, Environ. Chem. Lett., 10(2), 109 (2012).

    Article  CAS  Google Scholar 

  18. Y. SaG, B. Tatar and T. Kutsal, Bioresour. Technol., 89(1), 27 (2003).

    Article  Google Scholar 

  19. U. Filipkowska and K. Waraksa, Adsorption., 14(6), 815 (2008).

    Article  CAS  Google Scholar 

  20. L. Cavas, Z. Karabay, H. Alyuruk, H. Dogan and G.K. Demir, Chem. Eng. J., 171(2) (2011).

    Google Scholar 

  21. K. H. Chu, J. Hazard. Mater., 177(1), 1006 (2010).

    Article  CAS  Google Scholar 

  22. E. Malkoc and Y. Nuhoglu, Chem. Eng. Sci., 61(13), 4363 (2006).

    Article  CAS  Google Scholar 

  23. K. Xiao, X. Wang, X. Huang, T.D. Waite and X. Wen, J. Membr. Sci., 342(1), 22 (2009).

    Article  CAS  Google Scholar 

  24. B.Y. Swamy, J. H. Chang, H. Ahn, W. K. Lee and I. Chung, Cellulose, 20(3), 1261 (2013).

    Article  CAS  Google Scholar 

  25. H. S. Mansur and H. S. Costa, Chem. Eng. J., 137(1), 72 (2008).

    Article  CAS  Google Scholar 

  26. O. Gulnaz, A. Kaya and S. Dincer, J. Hazard. Mater., 134(1), 190 (2006).

    Article  CAS  Google Scholar 

  27. W.J. Song, X. Pan and D. Zhang, Biotechnol. Biotechnol. Equip., 26(6), 3371 (2012).

    Article  CAS  Google Scholar 

  28. M. Trgo, V. Vuskojevic-Medvidovic and J. Perc, Ind. J. Chem. Technol., 18(2), 123 (2011).

    CAS  Google Scholar 

  29. L. Deng, Y. Su, H. Su, X. Wang and X. Zhu, Adsorption, 12(4), 267 (2006).

    Article  CAS  Google Scholar 

  30. W. S. Shin, K. Kang and Y. K. Kim, Environ. Eng. Res., 19(1), 15 (2014).

    Article  Google Scholar 

  31. G. H. Pino, L.M. Souza de Mesquita, L. M. Torem and G.A. Pinto, Min. Eng., 19(5), 380 (2006).

    Article  CAS  Google Scholar 

  32. N. Das, P. Karthika, R. Vimala and V. Vinodhin, Natural Product Radiance, 7(2), 133 (2008).

    Google Scholar 

  33. J. Barron-Zambrano, A. Szygula, M. Ruiz, A.M. Sastre and E. Guibal, J. Environ. Manage., 91(12), 2669 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urszula Filipkowska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filipkowska, U., Szymczyk, P., Kuczajowska-Zadrożna, M. et al. Effect of conditions of air-lift type reactor work on cadmium adsorption. Korean J. Chem. Eng. 32, 2024–2030 (2015). https://doi.org/10.1007/s11814-015-0022-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-015-0022-1

Keywords

Navigation