Skip to main content
Log in

Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The present investigation concerns the experimental design in preparing a solid dispersion of ionized carvedilol with hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA) by adopting ‘kneading technique’. Simplex lattice design has been chosen to develop model equations that correlate the process variables such as HPβCD (mg), TA (mg), and kneading time (min) with the response variables, such as solubility (mg/mL) and drug release (%) from the solid dispersion. Software-generated ANOVA results confirmed the sufficiency of model equations. Results predicted by model equations are in good agreement with that of experimental results. Optimized formulation with variables ‘CV: HPβCD: TA-kneading time’ (200mg: 689.6mg: 227.6mg–45 min) showed complete drug release (∼99%) within 15 min and enhanced solubility of 1.89mg/mL. The instrumental analysis (DSC, XRD& FTIR) of the optimized solid dispersion suggests a transformation of crystallinity of drug to amorphous form, due to its complexation with HPβCD. Hence, this combination of drug and carriers suggests an improvement of carvedilol bioavailability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Nagarwal, A. Srinatha and J. K. Pandit, AAPS PharmSciTech., 10, 977 (2009).

    Article  CAS  Google Scholar 

  2. D.T. Friesen, M. Crew, W. J. Curatolo, J.A. S. Nightingale, R. Shanker and D. T. Smithey, Mol. Pharm., 5, 1003 (2008).

    Article  CAS  Google Scholar 

  3. V. J. Stella and K.W.N. Addae, Adv. Drug Deliv. Rev., 59, 677 (2007).

    Article  CAS  Google Scholar 

  4. A. T. M. Serajuddin, Adv. Drug Deliv. Rev., 59, 603 (2007).

    Article  CAS  Google Scholar 

  5. H. G. Brittain, J. Pharm. Sci., 91, 1573 (2002).

    Article  CAS  Google Scholar 

  6. M. Li, A. Davies, N. Malek, N. Qiao, W. Schlindwein and G. Trappitt, Int. J. Pharm., 419, 1 (2011).

    Article  Google Scholar 

  7. T. Loftsson, C. Amiel, P. Jansook, K.L. Larsen, M. Messner, M.D. Moya-Ortega, T.T. Nielsen, H. H. Sigurdsson and V. Wintgens, J. Inclus. Phenom. Macro. Chem., 69, 377 (2011).

    Article  Google Scholar 

  8. M.A. Rahman, R. Harwansh, A. Hussain, S. Hussain and M.A. Mirza, Curr. Drug Deliv., 8, 330 (2011).

    Article  CAS  Google Scholar 

  9. C. M. Keck, S. Gohla and R. H. Muller, Eur. J. Pharm. Biopharm., 78, 1 (2011).

    Article  Google Scholar 

  10. J.K. Lee, K.B. Kim and M.H. Lee, Intermetallics, 18, 2019 (2010).

    Article  CAS  Google Scholar 

  11. A. T. M. Serajuddin, J. Pharm. Sci., 10, 1058 (1999).

    Article  Google Scholar 

  12. T. Loftsson, M. Masson, N. Schipper and H. H. Sigurdsson, Pharmazie, 59, 25 (2004).

    CAS  Google Scholar 

  13. M. P. Buera, P. A. P. Cevallos and B. E. Elizalde, J. Food Eng., 99, 70 (2010).

    Article  Google Scholar 

  14. D. Duchene and D. Wouessidjewe, Drug Dev. Ind. Pharm., 16, 2487 (1990).

    Article  CAS  Google Scholar 

  15. W. Misiuk and M. Zalewska, Carbohydr. Polym., 77, 482 (2009).

    Article  CAS  Google Scholar 

  16. G. A. Lewis, D. Mathieu and R. P.T. Luu, Pharmaceutical experimental design, CRC Press, New York.

  17. James Goodnight., JMP 10 Design of Experiments Guide, SAS Publishing, Cary, 177 (2012).

    Google Scholar 

  18. V. Pokharkar, S. Dhar, A. Khanna, L. Mandpe and V. Venkatpurwar, Acta Pharm., 59, 121 (2009).

    Article  CAS  Google Scholar 

  19. W.H. Karasov and J.M. Diamond, J. Comp. Physiol. [B], 152, 105 (1983).

    Article  CAS  Google Scholar 

  20. R. Bouer, L. Barthe, G. Houin, C. Philibert, C. Tournaire and J. Woodley, Fundam Clin Pharmacol., 13, 494 (1999).

    Article  CAS  Google Scholar 

  21. P. Mura, G. Bramanti, M.T. Faucci and A. Manderioli, J. Incl. Phenom. Macroc. Chem., 39, 131 (2001).

    Article  CAS  Google Scholar 

  22. J.J.T. Labanderia, M.T. E. Diaz, M. Kata and J. L.V. Jato, Eur. J. Pharm. Sci., 1, 291 (1994).

    Article  Google Scholar 

  23. M.J. Ginski, J. E. Polli and R. Taneja, Int. J. Pharm., 177, 117 (1999).

    Article  CAS  Google Scholar 

  24. A. Paradkar, A. A. Ambike, B. K. Jadhav and K.R. Mahadik, Int. J. Pharm., 271, 281 (2004).

    Article  CAS  Google Scholar 

  25. J. Wang, Y. Cao, B. Sun and C. Wang, Food Chem., 124, 1069 (2011).

    Article  CAS  Google Scholar 

  26. R.N. Shamma and M. Basha, Powder Technol., 237, 406 (2013).

    Article  CAS  Google Scholar 

  27. E. Pincu and V. Meltzer, Cent. Eur. J. Chem., 10, 1584 (2012).

    Article  Google Scholar 

  28. A. Paradkar, A. A. Ambike, K.R. Mahadik, L. P. Mandpe, M. N. Padamwar and V. B. Pokharkar, Powder Technol., 167, 20 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Yuvaraja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuvaraja, K., Das, S.K. & Khanam, J. Process optimization and characterization of carvedilol solid dispersion with hydroxypropyl-β-cyclodextrin and tartaric acid. Korean J. Chem. Eng. 32, 132–140 (2015). https://doi.org/10.1007/s11814-014-0192-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0192-2

Keywords

Navigation