Skip to main content

Advertisement

Log in

Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore

  • Transport Phenomena
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We studied the leaching kinetics of recovering neodymium in sulfuric acid from the rare earth elements (REE) slag concentrated by smelting reduction from a magnetite ore containing monazite. The leaching kinetics on neodymium was conducted at a reactant concentration of 1.5 g REE slag per L of 0.3 M H2SO4, agitation of 750 rpm and temperature ranging from 30 to 80 °C. Neodymium oxide included in the REE slag was completely converted into neodymium sulfate phase (Nd2(SO4)3) in H2SO4 after the leaching of 5 h, 80 °C. As a result, the leaching mechanism was determined in a two-stage model based on the shrinking core model with spherical particles. The first step was determined by chemical reaction, and the second step was determined by ash layer diffusion because the leaching of REEs by the first chemical reaction increases the formation of the ash layer affecting as a resistance against the leaching. By using the Arrhenius expression, the apparent activation energy of the first chemical reaction step was found to be 9 kJmol−1. After the first chemical reaction, leaching reaction rate was determined by the ash layer diffusion. The apparent activation energy of ash layer diffusion was found to be 32 kJmol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Massari and M. Ruberti, Resources Policy, 38, 36 (2013).

    Article  Google Scholar 

  2. C. Jirang and Z. Lifeng, J. Hazard. Mater., 158, 228 (2008).

    Article  Google Scholar 

  3. J.-C. Lee, H. T. Song and J.-M. Yoo, Conservation and Recycling, 50, 380 (2007).

    Article  Google Scholar 

  4. A. Tuncuk, V. Stazi, A. Akcil, E.Y. Yazici and H. Deveci, Miner. Eng., 25, 28 (2012).

    Article  CAS  Google Scholar 

  5. I.C. Nnorom and O. Osibanjo, Conservation and Recycling, 52, 843 (2008).

    Article  Google Scholar 

  6. M. Stefania and R. Marcello, Resources Policy, 3, 36 (2013).

    Google Scholar 

  7. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi and E. Vahidi, Hydrometallurgy, 102, 14 (2010).

    Article  CAS  Google Scholar 

  8. R. Dehghan, M. Noaparast and M. Kolahdoozan, Hydrometallurgy, 96, 275 (2009).

    Article  CAS  Google Scholar 

  9. Y. A. El-Nadi, Hydrometallurgy, 119, 23 (2012).

    Article  Google Scholar 

  10. M. Kul, Y. Topkaya and I. Karakaya, Hydrometallurgy, 93, 129 (2008).

    Article  CAS  Google Scholar 

  11. K. Liu, Q. Chen, Z. Yin, H. Hu and Z. Ding, Hydrometallurgy, 125, 125 (2012).

    Article  Google Scholar 

  12. L. Minting, W. Chang, Q. Shuang, Z. Xuejiao, L. Cunxiong and D. Zhigan, Hydrometallurgy, 104, 193 (2010).

    Article  Google Scholar 

  13. G. A. Moldoveanu and V.G. Papangelakis, Hydrometallurgy, 117, 71 (2012).

    Article  Google Scholar 

  14. S.-J. Yoo, H. S. Yoon, H.D. Jang, M.-J. Lee, S.-I. Lee, S.-T. Hong and H. S. Park, Chem. Eng. J., 133, 79 (2007).

    Article  CAS  Google Scholar 

  15. S.-J. Yoo, D.-H. Kwak, J.-W. Lee, U.-Y. Hwang and H.-D. Jang, Hydrometallurgy, 96, 223 (2009).

    Article  CAS  Google Scholar 

  16. J. R. Dodson, A. J. Hunt, H. L. Parker, Y. Yang and J. H. Clark, Chem. Eng. Process., 51, 69 (2012).

    Article  CAS  Google Scholar 

  17. I. Kostova, Curr. Med. Chem. 5, 591 (2005).

    CAS  Google Scholar 

  18. A. J. Manhique, W.W. Focke and M. Carvalho, Hydrometallurgy, 109, 230 (2011).

    Article  CAS  Google Scholar 

  19. O. Levenspiel, Chemical Reaction Engineering, 3rd Ed., John Wiley & Sons Inc., New York (2003).

    Google Scholar 

  20. L. D. Schmidt, The Engineering of Chemical Reactions, 2nd Ed., Oxford University Press (2005).

    Google Scholar 

  21. M. Avrami, J. Chem. Phys., 7, 1103 (1939).

    Article  CAS  Google Scholar 

  22. C. F. Dickinson and G. R. Heal, Thermochim. Acta, 340, 89 (1999).

    Article  Google Scholar 

  23. J. J. M. Órfão and F.G. Martins, Thermochim. Acta, 390, 195 (2002).

    Article  Google Scholar 

  24. Y. Kanazawa and M. Kamitani, J. Alloys Compd., 408, 1339 (2006).

    Article  Google Scholar 

  25. Y. A. El-Nadi, J. A. Daoud and H. F. Aly, Int. J. Miner. Process, 76, 101 (2005).

    Article  CAS  Google Scholar 

  26. Y. Ding, Q. Xue, G. Wang and J. Wang, Matallurgy and Materials Transactions B, 28, 28 (2013).

    Article  Google Scholar 

  27. A. Fozia, S. Muhammad and A. Ata, Hydrometallurgy, 117, 1 (2012).

    Google Scholar 

  28. A. M. Georgiana and G. P. Vladimiros, Hydrometallurgy, 117, 71 (2012).

    Google Scholar 

  29. A.T. Kandil, M. M. Aly, E. M. Moussa, A. M. Kamel, M. M. Gouda and M. N. Kouraim, J. Rare Earths, 28, 576 (2010).

    Article  CAS  Google Scholar 

  30. D. J. Sapsford, R. J. Bowell, J. N. Geroni, K. M. Penman and M. Dey, Miner. Eng., 39, 165 (2012).

    Article  CAS  Google Scholar 

  31. J. Tian, J. Yin, R. Chi, G. Rao, M. Jiang and K. Ouyang, Hydrometallurgy, 101, 166 (2010).

    Article  CAS  Google Scholar 

  32. T. N. Akinlua and T. R. Ajayi, Fuel, 87, 1469 (2008).

    Article  CAS  Google Scholar 

  33. HSC Chemistry 5.0 Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Ver 5.11, Outokumpu Research, Finland.

  34. M. Gharabaghi, M. Noaparast and M. Irannajad, Hydrommetallurgy, 95, 341 (2009).

    Article  CAS  Google Scholar 

  35. Y. Kadioglu, S. Karaca and S. Bayrakceken, Fuel Process. Technol., 41, 273 (1995).

    Article  CAS  Google Scholar 

  36. F.W. Y. Momade and Z. G. Momade, Hydrometallurgy, 54, 25 (1999).

    Article  CAS  Google Scholar 

  37. H. Okur, T. Tekin, A. K. Ozer and M. Bayramoglu, Hydrometallurgy, 67, 79 (2002).

    Article  CAS  Google Scholar 

  38. M. Alkan and M. Dogan, Chem. Eng. Process., 43, 867 (2004).

    Article  CAS  Google Scholar 

  39. O. Lacin, B. Donmez and F. Demir, Int. J. Miner. Process., 75, 91 (2005).

    Article  CAS  Google Scholar 

  40. F. Bakan, O. Lacin, B. Bayrak and H. Sarac, Int. J. Miner. Process., 80, 27 (2006).

    Article  CAS  Google Scholar 

  41. S. Aydogan, M. Erdemoglu, A. Aras, G. Ucar and A. Ozkan, Hydrometallurgy, 84, 239 (2006).

    Article  CAS  Google Scholar 

  42. A. D. Souza, P. S. Pina, E.V. O. Lima, C. A. Da Silva and V.A. Leao, Hydrometallurgy, 89, 337 (2007).

    Article  CAS  Google Scholar 

  43. A. Ekmekyapar, N. Demirkiran and A. Kunkul, Chem. Eng. Res. Des., 86, 1011 (2008).

    Article  CAS  Google Scholar 

  44. A. D. Souza, P. S. Pina, F. M. F. Santos, C. A. Da Silva and V. A. Leao, Hydrometallurgy, 95, 207 (2009).

    Article  CAS  Google Scholar 

  45. B. Donmez, F. Demir and O. Lacin, J. Ind. Eng. Chem., 15, 865 (2009).

    Article  CAS  Google Scholar 

  46. M. S. Safarzadeh, D. Moradkhani and M. Ojaghi-Ilkhchi, J. Hazard. Mater., 163, 880 (2009).

    Article  CAS  Google Scholar 

  47. T. Heydarpour, B. Rezai and M. Gharabaghi, Chem. Eng. Res. Des., 89, 2153 (2011).

    Article  CAS  Google Scholar 

  48. A. T. Kandi, M. M. Aly, E. M. Moussa, A. M. Kamel, M. M. Gouda and M. N. Kouraim, J. Rare Earths, 28, 576 (2010).

    Article  Google Scholar 

  49. R. Guliyev, S. Kuslu, T. Calban and S. Colak, J. Ind. Eng. Chem., 18, 1202 (2012).

    Article  CAS  Google Scholar 

  50. M. Gharabaghi, M. Irannajad and A. R. Azadmehr, Sep. Puri. Technol., 86, 9 (2012).

    Article  CAS  Google Scholar 

  51. P. Raschman and E. Smincakova, Hydrometallurgy, 113, 60 (2012).

    Article  Google Scholar 

  52. H. Huang, J. Li, X. Li and Z. Zhang, Sep. Purif. Technol., 108, 45 (2013).

    Article  CAS  Google Scholar 

  53. D. Gaoxiang, L. Guocheng and H. Zuwen, Chin. J. Chem. Eng., 21, 736 (2013).

    Article  Google Scholar 

  54. M. Gharabaghi, M. Irannajad and A. R. Azadmehr, Chem. Eng. Res. Des., 91, 325 (2013).

    Article  CAS  Google Scholar 

  55. X. Feng, Z. Long, D. Cui, L. Wang, X. Huang and G. Zhang, Tran. Nonferrous Met. Soc. China, 23, 849 (2013).

    Article  CAS  Google Scholar 

  56. J. P. Martins, Hydrometallurgy, 42, 221 (1996).

    Article  CAS  Google Scholar 

  57. A. D. Souza, P. S. Pina, V. A. Leao, C. A. Silva and P. F. Siqueira, Hydrometallurgy, 89, 72 (2007).

    Article  CAS  Google Scholar 

  58. M. Aarabi-Karasgani, F. Rashchi, N. Mostoufi and E. Vahidi, Hydrometallurgy, 102, 14 (2010).

    Article  CAS  Google Scholar 

  59. K. Liu, Q. Chen, Z. Yin, H. Hu and Z. Ding, Hydrometallurgy, 125, 125 (2012).

    Article  Google Scholar 

  60. X. Feng, Z. Long, D. Cui, L. Wang, X. Huang and G. Zhang, Trans. Nonferrous Met. Soc. China, 23, 849 (2013).

    Article  CAS  Google Scholar 

  61. X. Bian, S. Yin, Y. Luo and W. Wu, Trans. Nonferrous Met. Soc. China, 21, 2306 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Joon Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, HS., Kim, CJ., Chung, K.W. et al. Leaching kinetics of neodymium in sulfuric acid of rare earth elements (REE) slag concentrated by pyrometallurgy from magnetite ore. Korean J. Chem. Eng. 31, 1766–1772 (2014). https://doi.org/10.1007/s11814-014-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0078-3

Keywords

Navigation