Skip to main content
Log in

Design of reverse osmosis networks for multiple freshwater production

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Reverse osmosis (RO) desalination, which produces multiple freshwater from seawater, has been studied in this work. An optimization method based on process synthesis has been applied to design the RO system. First, a simplified superstructure that contains all the feasible design for this desalination problem has been presented. In this structural representation, the stream split ratios and the logical expressions of stream mixing were employed, which can make the mathematical model easy to handle. Then, the membrane separation units employing the spiral wound reverse osmosis elements were described by using a pressure vessel model, which takes into account the pressure drop and the concentration changes in the membrane channel. The optimum design problem can be formulated as a mixedinteger non-linear programming (MINLP) problem, which minimizes the total annualized cost of the RO system. The cost equation relating the capital and operating cost to the design variables, as well as the structural variables, has been introduced in the objective function. The problem solution includes the optimal streams distribution, the optimal system structure and the operating conditions. The design method could also be used for the optimal selection of membrane element type in each stage and the optimal number of membrane elements in each pressure vessel. The effectiveness of this design methodology has been demonstrated by solving a desalination case. The comparisons with common industrial approach indicated that the integrative RO system proposed in this work is more economical, which can lead to significant capital cost and energy saving and provide an economically attractive desalination scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. El-Zanati and S. Eissa, Desalination, 165, 133 (2004).

    Article  CAS  Google Scholar 

  2. A. Villafafila and I.M. Mujtaba, Desalination, 155, 1 (2003).

    Article  CAS  Google Scholar 

  3. N. M. Wade, Desalination, 136, 3 (2001).

    Article  CAS  Google Scholar 

  4. M. Wilf and C. Bartels, Desalination, 173, 1 (2005).

    Article  CAS  Google Scholar 

  5. M. Wilf, Desalination, 113, 157 (1997).

    Article  CAS  Google Scholar 

  6. M.G. Marcovecchio, P. A. Aguirre and N. J. Scenna, Desalination, 184, 259 (2005).

    Article  CAS  Google Scholar 

  7. J. A. Redondo and A. Casanas, Desalination, 134, 83 (2001).

    Article  CAS  Google Scholar 

  8. M. Busch and W. E. Mickols, Desalination, 165, 299 (2004).

    CAS  Google Scholar 

  9. Y. Y. Lu and Y. D. Hu, J. Membr. Sci., 282, 7 (2006).

    Article  CAS  Google Scholar 

  10. Y. Y. Lu and Y. D. Hu, J. Membr. Sci., 287, 219 (2007).

    Article  CAS  Google Scholar 

  11. I.M. El-Azizi, Desalination, 153, 273 (2002).

    Article  Google Scholar 

  12. G. Al-Enezi and N. Fawzi, Desalination, 153, 281 (2002).

    Article  Google Scholar 

  13. M.M. El-Halwagi, AIChE J., 38, 1185 (1992).

    Article  CAS  Google Scholar 

  14. M. Zhu and M.M. El-Halwagi, J. Membr. Sci., 129, 161 (1997).

    Article  CAS  Google Scholar 

  15. N.G. Voros and Z.B. Maroulis, Comp. Chem. Eng., 20, 345 (1996).

    Article  Google Scholar 

  16. N. G. Voros and Z. B. Maroulis, J. Membr. Sci., 127, 47 (1997).

    Article  CAS  Google Scholar 

  17. F. Maskan and D. E. Wiley, AIChE J., 46, 946 (2000).

    Article  CAS  Google Scholar 

  18. J. E. Nemeth, Desalination, 118, 63 (1998).

    Article  CAS  Google Scholar 

  19. W.G. J. Van der Meer and C.W. A. Averink, Desalination, 105, 25 (1996).

    Article  Google Scholar 

  20. W.G. J. Van der Meer and M. Riemersma, Desalination, 119, 57 (1998).

    Article  Google Scholar 

  21. L. P. Wessels and W. G. J. Van der Meer, Desalination, 119, 341 (1998).

    Article  CAS  Google Scholar 

  22. A. Malek and M. N. A. Hawlader, Desalination, 105, 245 (1996).

    Article  CAS  Google Scholar 

  23. N. M. Al-Bastaki and A. Abbas, Desalination, 132, 181 (2000).

    Article  CAS  Google Scholar 

  24. N. M. Al-Bastaki and A. Abbas, Desalination, 126, 33 (1999).

    Article  CAS  Google Scholar 

  25. Membrane Technical Information, http://www.dow.com/liquidseps/service/lm_techinfo.htm.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyue Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Y., Liao, A. & Hu, Y. Design of reverse osmosis networks for multiple freshwater production. Korean J. Chem. Eng. 30, 988–996 (2013). https://doi.org/10.1007/s11814-013-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-013-0009-8

Key words

Navigation