Skip to main content
Log in

Process modeling and design of reverse osmosis membrane system for seawater desalination

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Reverse osmosis desalination membranes can be utilized to purify seawater creating clean water. To meet purity requirements multiple membrane modules are typically required and the configuration should be chosen to minimize energy consumption and costs. Here a numerical model is proposed based on a tanks-in-series formulation of model equations. This model was validated against reverse osmosis system analysis (ROSA®) simulation software and used to investigate the performance of a number of different configurations. Systematic evaluation was made on how the performance of membrane systems is influenced by the arrangement of multiple vessels for the multi-module design of membranes systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C:

concentration [kg m−3]

dh :

hydraulic diameter [m]

D:

diffusivity [m2 s−1]

i:

index or tank number in tanks-in-series model

JW :

water flux [m s−1]

J S :

salt flux [kg m−2 s−1]

JB :

boron flux [kg m−2 s−1]

k:

mass transfer coefficient [m s−1]

k dc C td A′ n:

coefficients used in Eqs. (13) and (14) [dimensionless]

l :

length of membrane mesh spacer [m]

L:

length of membrane unit [m]

M:

empirical parameter defined by Eq. (9)

N:

number of tanks used in the tanks-in-series model

Q:

volume flow rate [m3h−1]

P:

pressure [Pa]

PW :

waterpermeability[m s−1Pa−1]

r:

relation coefficient between salt and boron mass transfer [dimensionless]

Re:

Reynolds number [dimensionless]

Sh:

Sherwood number [dimensionless]

u:

linear velocity [m s−1]

T:

temperature [C]

Pm :

water permeability [m s−1Pa−1]

Ps :

salt permeability [m s−1]

PBborate :

borate ion permeability [s m−1]

PBboric :

boric acid permeability [s m−1]

Rm :

membrane resistance to water [Pa s m−1]

Rs :

membrane resistance to salt [s m−1]

π :

osmotic pressure [Pa]

ρ :

density [kg m−3]

f:

feed

r:

retentate

p:

permeate

b:

bulk (average value inside a tank)

B:

boron

m:

value at the membrane wall

W:

water

References

  1. A. A. Alsarayeh, M. A. Al-Obaidi, R. Patel and I. M. Mujtaba, Processes, 8, 573 (2020).

    Article  Google Scholar 

  2. World Health Organization, Guidelines for drinking-water quality: Fourth edition incorporating the first addendum, Geneva, Switzerland (2017).

  3. A. Abbas, Chem. Eng. Process., 44, 999 (2005).

    Article  CAS  Google Scholar 

  4. M. A. Al-Obaidi, J.-P. Li, S. Alsadaie, C. Kara-Zaitri and I. M. Mujtaba, Chem. Eng. J., 350, 824 (2018).

    Article  CAS  Google Scholar 

  5. V. Geraldes, N. E. Pereira and M. N. de Pinho, Ind. Eng. Chem. Res., 44, 1897 (2005).

    Article  CAS  Google Scholar 

  6. S. Senthilmurugan, A. Ahluwalia and S. K. Gupta, Desalination, 173, 269 (2005).

    Article  CAS  Google Scholar 

  7. S. Avlonitis, W. T. Hanbury and M. Ben Boudinar, Desalination, 89, 227 (1993).

    Article  CAS  Google Scholar 

  8. S. Sundaramoorthy, G. Srinivasan and D. V. R. Murthy, Desalination, 280, 403 (2011).

    Article  CAS  Google Scholar 

  9. P. P. Mane, P. K. Park, H. Hyung, J. C. Brown and J. H. Kim, J. Membr. Sci., 338, 119 (2009).

    Article  CAS  Google Scholar 

  10. H. Hyung and J. H. Kim, J. Membr. Sci., 286, 269 (2006).

    Article  CAS  Google Scholar 

  11. Y. Du, Y. Liu, S. Zhang and Y. Xu, Ind. Eng. Chem. Res., 55, 12860 (2016).

    Article  CAS  Google Scholar 

  12. M. Binns, Analytical models for seawater and boron removal through reverse osmosis, Sustainability, 13, 8999 (2021).

    CAS  Google Scholar 

  13. O. Levenspiel, Chemical reaction engineering, 3rd ed., Wiley and sons, New Jersey (1999).

    Google Scholar 

  14. T. Katoh, M. Tokumura, H. Yoshikawa and Y. Kawase, Sep. Purif. Technol., 76, 362 (2011).

    Article  CAS  Google Scholar 

  15. M. Binns, S. Lee, Y. K. Yeo, J. H. Lee, J. H. Moon, J. G. Yeo and J. K. Kim, J. Membr. Sci., 497, 458 (2016).

    Article  CAS  Google Scholar 

  16. S. Lee, M. Binns, J. H. Lee, J. H. Moon, J. G. Yeo, Y. K. Yeo, Y. M. Lee and J. K. Kim, J. Membr. Sci., 541, 224 (2017).

    Article  CAS  Google Scholar 

  17. C. Lee, Y. Kang, D. Kim and I. Kim, Membranes, 11, 240 (2021).

    Article  CAS  Google Scholar 

  18. A. Ruiz-Garcia, F. A. Leon and A. Ramos-Martin, Desalination, 449, 131 (2019).

    Article  CAS  Google Scholar 

  19. M. Taniguchi, M. Kurihara and S. Kimura, J. Membr. Sci., 183, 259 (2001).

    Article  CAS  Google Scholar 

  20. ROSA: reverse osmosis system analysis software, version 7, Dow Chemicals.

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) (No 2019R1A2C2002263) funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Binns or Jin-Kuk Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Binns, M. & Kim, JK. Process modeling and design of reverse osmosis membrane system for seawater desalination. Korean J. Chem. Eng. 39, 1375–1383 (2022). https://doi.org/10.1007/s11814-022-1086-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-022-1086-3

Keywords

Navigation