Skip to main content
Log in

Effect of Fe3+ doping on the performance of TiO2 mechanocoated alumina bead photocatalysts

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ferric ion was introduced to the commercial photocatalyst P25 (Degussa) by ultrasonic wet impregnation technique. The concentration of the dopant was varied from 0.0 to 3.0% Fe/Ti ratio. The doped TiO2 was then loaded to alumina balls using mechanical coating technique and followed by calcination in air at 400, 450, 500 and 550 °C. The fabricated photocatalyst was characterized by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, UV-Vis diffuse reflectance spectroscopy, X-ray adsorption near edge structure and photoluminescence spectroscopy. The photocatalytic activity was tested by following the degradation of methylene blue (MB). It was found that the Fe3+ doped TiO2/Al2O3 has a combination of anatase and rutile phase and free of iron oxide phases. The optimum calcination temperature is 400 °C with 0.1% Fe3+ concentration. The catalyst addresses the entrainment in photocatalytic reactors, eliminating the need for a post filtration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Long, Y. Lu, Y. Huang, Y. Peng, Y. Lu, S.-Z. Kang and J. Mu, J. Phys. Chem. C., 113, 13899 (2009).

    Article  CAS  Google Scholar 

  2. W. S. Nam and G.Y. Han, Korean. J. Chem. Eng., 20, 180 (2003).

    Article  CAS  Google Scholar 

  3. S. Artkla, K. Wantala, B. Srinameb, N. Grisdanurak, W. Klysubun and J. Wittayakun, Korean. J. Chem. Eng., 26, 1556 (2009).

    Article  CAS  Google Scholar 

  4. M. Zhou, J. Yu and B. Cheng, J. Hazard. Mater., 137, 1838 (2006).

    Article  CAS  Google Scholar 

  5. S. Yin, M. Komatsu, Q. Zhang, F. Saito and T. Sato, J. Mater. Sci., 42, 2399 (2007).

    Article  CAS  Google Scholar 

  6. W. Choi, A. Termin and M. Hoffmann, J. Phys. Chem., 98, 13669 (1994).

    Article  Google Scholar 

  7. J.-W. Shi, J.-T. Zheng, Y. Hu and Y.-C. Zhao, Mater. Chem. Phys., 106, 247 (2007).

    Article  CAS  Google Scholar 

  8. H. Yoshida, Y. Lu, H. Nakayama and M. Hirohashi, J. Alloy. Compd., 475, 383 (2009).

    Article  CAS  Google Scholar 

  9. M. I. Litter and J. A. Navío, J. Photoch. Photobio. A., 98, 171 (1996).

    Article  CAS  Google Scholar 

  10. F. R. Feret, D. Roy and C. Boulanger, Spectro. Acta. B., 55, 1051 (2000).

    Article  Google Scholar 

  11. Z. Li, W. Shen, W. He and X. Zu, J. Hazard. Mater., 155, 590 (2008).

    Article  CAS  Google Scholar 

  12. M. Zhou, J. Yu and B. Cheng, J. Hazard. Mater., 137, 1838 (2006).

    Article  CAS  Google Scholar 

  13. P. Bouras, E. Stathatos and P. Lianos, Appl. Catal. B-Environ., 73, 51 (2007).

    Article  CAS  Google Scholar 

  14. B. Liu, L. Wen and X. Zhao, Mater. Chem. Phys., 106, 350 (2007).

    Article  CAS  Google Scholar 

  15. T. L. Thompson and J. T. Yates, Top. Catal., 35, 197 (2005).

    Article  CAS  Google Scholar 

  16. T.-F. Hsu, T.-L. Hsiung, J. Wang, C.-H. Huang and H. P. Wang, Nucl. Instrum. Methods Phys. Res. A., 619, 98 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurak Grisdanurak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bajamundi, C.J.E., Dalida, M.L.P., Wantala, K. et al. Effect of Fe3+ doping on the performance of TiO2 mechanocoated alumina bead photocatalysts. Korean J. Chem. Eng. 28, 1688–1692 (2011). https://doi.org/10.1007/s11814-011-0031-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0031-7

Key words

Navigation