Skip to main content
Log in

Determination of optimal conditions for ribonucleic acid production by Candida tropicalis no. 121

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The experiments were based on multivariate statistical concepts, and response surface methodology (RSM) was applied to optimize the fermentation medium for the production of ribonucleic acid (RNA) by Candida tropicalis no. 121. The process involved the individual adjustment and optimization of various medium components at shake flask level. The two-level Plackett-Burman (PB) design was used to screen the medium components, which significantly influenced RNA production. Among seven variables, the concentrations of molasses, ZnSO4, and H3PO4 were found to be the important factors that significantly affected RNA production (confidence levels above 95%). These factors were further optimized using a central composite design (CCD) and RSM. The optimum values for the critical components were as follows: molasses 47.21 g/L: ZnSO4 0.048 g/L; H3PO4 1.19 g/L. Under optimal conditions, RNA production was 2.56 g/L, which was in excellent agreement with the predicted value (2.561 g/L), and led to a 2.1-fold increase compare with that using the original medium in RNA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. H. Slobodianik, Nutrition, 19, 68 (2003).

    Article  Google Scholar 

  2. Y. Kulshrestha and Q. Husain, Enzym. Microbial. Technol., 88, 470 (2006).

    Article  Google Scholar 

  3. J. D. Carver, B. Pimentel and I. William, Pediatrics, 88, 359 (1991).

    CAS  Google Scholar 

  4. L. M. L. Masor and J. Lee, US Patent 5,700,590 (1997).

  5. J. L. M. Herrick and J. A. S. Shecterle, Med. Hypoth., 72, 499 (2009).

    Article  CAS  Google Scholar 

  6. L. P. Qiu, G. L. Zhao, H. Wu, L. Jiang, X. F. Li and J. J. Liu, Carbohyd. Polym., 80, 326 (2010).

    Article  CAS  Google Scholar 

  7. Z. J. Xiao, P. H. Liu, J.Y. Qin and P. Xu, Appl. Microbiol. Biotechnol., 74, 61 (2007).

    Article  CAS  Google Scholar 

  8. H. J. Ying, X. C. Chen, H. P. Cao and J. Xiong, Appl. Microbiol. Biotechnol., 84, 677 (2009).

    Article  CAS  Google Scholar 

  9. S. Kar, T. K. Datta and R. C. Ray, Braz. Arch. Biol. Technol., 53, 301 (2010).

    CAS  Google Scholar 

  10. D. Granato, D. I. A. Castro, E. L. S. Neves and M. L. J. Food Sci., 75, 149 (2010).

    Article  Google Scholar 

  11. Y.Y. Qu, W. Q. Pi, F. Ma, J. T. Zhou and X.W. Zhang, Bioresour. Technol., 101, 4527 (2010).

    Article  CAS  Google Scholar 

  12. M. T. Küenzi, Biotechnol. Lett., 3, 127 (1979).

    Article  Google Scholar 

  13. X. Li, J. Ouyang, Y. Xu, M. Chen, X.Y. Song, Q. Yong and S.Y. Yu, Bioresour. Technol., 100, 3613 (2009).

    Article  CAS  Google Scholar 

  14. M. Kennedy and D. Krouse, J. Ind. Microbiol. Biotechnol., 6, 456 (1999).

    Article  Google Scholar 

  15. R. L. Plackett and J. P. Burman, Biometrika., 33, 305 (1946).

    Article  Google Scholar 

  16. X. C. Chen, J. X. Bai, J. M. Cao, Z. J. Li, J. Xiong, L. Zhang, Y. Hong and H. J. Ying, Bioresour. Technol., 100, 919 (2009).

    Article  CAS  Google Scholar 

  17. Y. P. Liu, P. Zheng, Z. H. Sun, Y. Ni, J. J. Dong and L. L. Zhu, Bioresour. Technol., 99, 1736 (2008).

    Article  CAS  Google Scholar 

  18. Q. Ye, X. M. Li, M. Yan, H. Cao and L. Xu, Appl. Microbiol. Biotechnol., 87, 517 (2010).

    Article  CAS  Google Scholar 

  19. R. Jain, J. Saxena and V. Sharma, Appl. Soil Ecol., 46, 90 (2010).

    Article  Google Scholar 

  20. X. Wang, X.W. Wang, M. X. Yin, Z. J. Xiao, C. Q. Ma, Z. X. Lin, P. Wang and P. Xu, Appl. Microbiol. Biotechnol., 76, 321 (2007).

    Article  CAS  Google Scholar 

  21. V. Kery, G. Kogan, K. Zajacova, L. Masler and J. Alfoldi, Enzyme. Microb. Technol., 13, 87 (1991).

    Article  CAS  Google Scholar 

  22. K. M. O’Brien, R. Dirmeier and M. Engle, J. Biol. Chem., 279, 51817 (2004).

    Article  Google Scholar 

  23. K. Shivam, C. P. M. Tripathi and S. K. Mishra, Electron. J. Biotechnol. (2009).

  24. V. Siva and A. K. Mansoor, Int. J. Pharmaceut., 234, 179 (2002).

    Article  Google Scholar 

  25. F. J. Cui, Z. Q. Liu, Y. Li, L. F. Ping, L.Y. Ping, Z. C. Zhang, L. Lin, Y. Dong and D. M. Huang, Biotechnol. Bioprocess. Eng., 15, 299 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanjie Ying.

Additional information

These author equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, H., Chen, X., Cao, J. et al. Determination of optimal conditions for ribonucleic acid production by Candida tropicalis no. 121. Korean J. Chem. Eng. 28, 1721–1726 (2011). https://doi.org/10.1007/s11814-011-0013-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-011-0013-9

Key words

Navigation