Skip to main content
Log in

Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature

  • Biotechnology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The performance of traditional heterologous protein production by Pichia pastoris with methanol induction at 30 °C is poor, characterized by low ATP regeneration rate and weak operation stability. A low temperature induction strategy at 20 °C was thus adopted for efficient porcine interferon-α production in a 10 L fermentor. With the strategy, maximal methanol tolerance level could reach about 40 g/L to effectively deal with methanol concentration variations, so that the complicated on-line methanol measurement system could be eliminated. Moreover, metabolic analysis based on multiple state-variables measurements indicated that pIFN-α antiviral activity enhancement profited from the formation of an efficient ATP regeneration system at 20 °C induction. Compared to the induction strategy at 30 °C, the proposed strategy increased the ATP regeneration rate by 49–66%, the maximal pIFN-α antiviral activity was enhanced about 20-fold and reached a higher level of 1.5×106 IU/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Cereghino and J. M. Cregg, FEMS Microbiol. Rev., 24, 45 (2000).

    Article  CAS  Google Scholar 

  2. S. Macauley-Patrick, M. L. Fazenda, B. McNeil and L. M. Harvey, Yeast, 22, 249 (2005).

    Article  CAS  Google Scholar 

  3. H.W. Chang, C. R. Jeng, J. J. Liu, T. L. Lin, C. C. Chang, M. Y. Chia, Y. C. Tsai and V. F. Pang, Vet. Microbiol., 108, 167 (2005).

    Article  CAS  Google Scholar 

  4. J. Chinsangaram, M. P. Moraes, M. Koster and M. J. Grubman, J. Virol., 77, 1621 (2003).

    Article  CAS  Google Scholar 

  5. G. P. Cereghino, J. L. Cereghino, C. Ilgen and J. M. Cregg, Curr. Opin. Biotechnol., 13, 329 (2002).

    Article  Google Scholar 

  6. T. Zhang, F. Gong, Y. Peng and Z. M. Chi, Process. Biochem., 44, 1335 (2009).

    Article  CAS  Google Scholar 

  7. N. K. Khatri and F. Hoffmann, Biotechnol. Bioeng., 93, 871 (2006).

    Article  CAS  Google Scholar 

  8. A. Nakano, C.Y. Lee, A. Yoshida, T. Matsumoto, N. Shiomi and S. Katoh, J. Biosci. Bioeng., 101, 227 (2006).

    Article  CAS  Google Scholar 

  9. H. F. Hang, W. Chen, M. J. Guo, J. Chu, Y. P. Zhuang and S. L. Zhang, Korean J. Chem. Eng., 25, 1065 (2008).

    Article  CAS  Google Scholar 

  10. B. E. Mayson, D.G. Kilburn, B. L. Zamost, C. K. Raymond and G. J. Lesnicki, Biotechnol. Bioeng., 81, 291 (2003).

    Article  CAS  Google Scholar 

  11. M. Jahic, J. C. Rotticci-Mulder, M. Martinelle, K. Hult and S.-O. Enfors, Bioprocess Biosyst. Eng., 24, 385 (2002).

    Article  CAS  Google Scholar 

  12. R. S. Yu, S. J. Dong, Y. M. Zhu, H. Jin, M. J. Gao, Z.Y. Duan, Z.Y. Zheng, Z. P. Shi and Z. Li, Bioprocess Biosyst. Eng., 33, 473 (2010).

    Article  CAS  Google Scholar 

  13. Y. Wang, Z. H. Wang, Q. L. Xu, G. C. Du, Z. Z. Hua, L. M. Liu, J. H. Li and J. Chen, Process. Biochem., 44, 949 (2009).

    Article  CAS  Google Scholar 

  14. C.Y. Lee, S. J. Lee, K. H. Jung, S. Katoh and E. K. Lee, Process Biochem., 38, 1147 (2003).

    Article  CAS  Google Scholar 

  15. C. Jungo, I. Marison and U. von Stockar, J. Biotechnol., 130, 236 (2007).

    Article  CAS  Google Scholar 

  16. M. Dragosits, J. Stadlmann, J. Albiol, K. Baumann, M. Maurer, B. Gasser, M. Sauer, F. Altmann, P. Ferrer and D. Mattanovich, J. Proteome Res., 8, 1380 (2009).

    Article  CAS  Google Scholar 

  17. H. L. Zhao, C. Xue, Y. Wang, X. Q. Yao and Z. M. Liu, Appl. Microbiol. Biotechnol., 81, 235 (2008).

    Article  CAS  Google Scholar 

  18. M. Jahic, F. Wallberg, M. Bollok, P. Garcia and S.-O. Enfors, Microb. Cell Fact., 2, 6 (2003).

    Article  Google Scholar 

  19. J. G. Zhang, X. D. Wang, J. N. Zhang and D. Z. Wei, J. Biosci. Bioeng., 105, 335 (2008).

    Article  CAS  Google Scholar 

  20. S. H. Woo, S. H. Park, H. K. Lim and K. H. Jung, J. Ind. Microbiol. Biotechnol., 32, 474 (2005).

    Article  CAS  Google Scholar 

  21. P. Li, A. Anumanthan, X.G. Gao, K. Ilangovan, V.V. Suzara, N. Düzgünes and V. Renugopalakrishnan, Appl. Biochem. Biotechnol., 142, 105 (2007).

    Article  CAS  Google Scholar 

  22. S. Suye, A. Ogawa, S. Yokoyama and A. Obayashi, Agric. Biol. Chem., 54, 1297 (1990).

    CAS  Google Scholar 

  23. S.B. Duan, Z. P. Shi, H. J. Feng, Z.Y. Duan and Z.G. Mao, Biochem. Eng. J., 30, 88 (2006).

    Article  CAS  Google Scholar 

  24. H. Jin, Z.Y. Zheng, M. J. Gao, Z.Y. Duan, Z. P. Shi, Z. X. Wang and J. Jin, Biochem. Eng. J., 37, 26 (2007).

    Article  CAS  Google Scholar 

  25. T. Charoenrat, M. Ketudat-Cairns, H. Stendahl-Andersen, M. Jahic and S.-O. Enfors, Bioprocess Biosyst. Eng., 27, 399 (2005).

    Article  CAS  Google Scholar 

  26. K. Schroer, K. Peter Luef, F. Stefan Hartner, A. Glieder and B. Pscheidt, Metab. Eng., 12, 8 (2010).

    Article  CAS  Google Scholar 

  27. I. J. van der Klei, H. Yurimoto, Y. Sakai and M. Veenhuis, Biochim. Biophys. Acta, 12, 1453 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, M., Dong, S., Yu, R. et al. Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. Korean J. Chem. Eng. 28, 1412–1419 (2011). https://doi.org/10.1007/s11814-010-0527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0527-6

Key words

Navigation