Skip to main content
Log in

Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM-5 catalyst

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The reaction was carried out in fixed bed reactor. The effect of process variables on the activity of oxalic acid treated 0.5 wt% ZnO/7 wt% CuO/HZSM5 catalyst for the conversion of methanol to gasoline range hydrocarbons was studied. The catalyst was prepared by incipient wetness impregnation method. After impregnation the catalyst was treated with oxalic acid. The validity of kinetic model proposed for the methanol to gasoline range hydrocarbon process at zero time on stream was studied, from the experimental results obtained in a wide range of operating conditions. The kinetic parameters for various models were calculated by solving the equation of mass conservation in the reactor for the lumps of the kinetic models. The kinetic model fitted well for simulating the operation in the fixed bed reactor in the range of 635 to 673 K, with regression coefficient (R2) higher than 0.96.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. C. Alyea and R. N. Bhat, Zeolites, 15, 318 (1995).

    Article  CAS  Google Scholar 

  2. V. R. Choudhary and A. K. Kinage, Zeolites, 15, 732 (1995).

    Article  CAS  Google Scholar 

  3. G. Calleja, A. de. Lucas and R. Van. Grieken, Fuel, 74, 4451 (1995).

    Article  Google Scholar 

  4. C. D. Chang, J. Catal., 86, 289 (1984).

    Article  CAS  Google Scholar 

  5. A. M. Al-Jarallah, U. A. El-Nafaty and M. M. Abdillahi, Appl. Catal. A: Gen., 154, 117 (1997).

    Article  CAS  Google Scholar 

  6. D. M. M. Song, H. Fu, J.O. Ehresmann and J. F. Haw, J. Am. Chem. Soc., 124, 3844 (2002).

    Article  CAS  Google Scholar 

  7. F. C. Patcas, J. Catal., 231, 194 (2005).

    Article  CAS  Google Scholar 

  8. J. L. Ramos, A.M. D. Farias, L. E. P. Borges, J. L. Monteiro, M. A. Fraga, S. L. Aguiar and G. Appel, Catal Today, 101, 39 (2005).

    Article  CAS  Google Scholar 

  9. C. D. Chang, Chem. Eng. Sci., 35, 619 (1980).

    Article  CAS  Google Scholar 

  10. J. F. Haw, W. Song, D. M. Marcus and J.B. Nicholas, Acc. Chem., 36, 317 (2003).

    Article  CAS  Google Scholar 

  11. G. J. Hutchings, G.W. Watson and D. J. Willock, Micro. Meso. Mater., 29, 67 (1999).

    Article  CAS  Google Scholar 

  12. W. Kaeding and S. A. Butter, J. Catal., 61, 155 (1980).

    Article  CAS  Google Scholar 

  13. M.M. Abdillahi, U. A. El-Nafaty and A. M. Al-Jarallah, Appl. Catal. A: Gen., 91, 1 (1992).

    Article  CAS  Google Scholar 

  14. O. Dewaele, V. L. Geers, G. F. Froment and G. B. Marin, Chem. Eng. Sci., 54, 4385 (1999).

    Article  CAS  Google Scholar 

  15. A. J. Marchi and G. F. Froment, Appl. Catal. A: Gen., 94, 91 (1993).

    Article  CAS  Google Scholar 

  16. K. Nishi, T. Shimizu, H. Yoshida, A. Satsuma and Hattori, Appl. Catal. A: Gen., 166, 335 (1998).

    Article  CAS  Google Scholar 

  17. F. J. Keil, Micro. Meso. Mater., 29, 49 (1999).

    Article  CAS  Google Scholar 

  18. D. Freeman, R. P. K. Wells and G. J. Hutchings, J. Catal., 205, 358 (2002).

    Article  CAS  Google Scholar 

  19. Y. Inoue, K. Nakashiro and Y. Ono, Micro. Meso. Mater., 4, 379 (1995).

    CAS  Google Scholar 

  20. Ø. Mikkelsen and S. Kolboe, Micro. Meso. Mater., 29, 173 (2002).

    Article  Google Scholar 

  21. H. Schoenfleder, J. Hinder, J. Werther and F. J. Keil, Chem. Eng. Sci., 49, 5377 (1994).

    Article  Google Scholar 

  22. M. Stöcker, Micro. Meso. Mater., 38, 279 (2000).

    Article  Google Scholar 

  23. U. Sedran, A. Mahay and H. I. D. Lasa, Chem. Eng. Sci., 45, 1161 (1990).

    Article  CAS  Google Scholar 

  24. M. Chen and W. J. Reagan, J. Catal., 59, 123 (1979).

    Article  CAS  Google Scholar 

  25. A.G. Gayubo, P. L. Benito, A. T. Aguayo, I. Aguirre and J. Bilbao, Chem. Eng. J., 63, 45 (1996).

    CAS  Google Scholar 

  26. P.H. Schipper and F. J. Kramback, Chem. Eng. Sci., 41, 1013 (1986).

    Article  CAS  Google Scholar 

  27. A.G. Gayubo, A. T. Aguayo, A. E. Sánchez del Campo, A. M. Tarrio and J. Bilbao, Ind. Eng. Chem. Res., 39, 292 (2000).

    Article  CAS  Google Scholar 

  28. R. S. Mihail, G. Satraja, Maria, G. Musca and G. Pop, Chem. Eng. Sci., 38, 1581 (1983).

    Article  CAS  Google Scholar 

  29. H. A. Zaidi and K. K. Pant, Catal. Today, 96, 155 (2004).

    Article  CAS  Google Scholar 

  30. H.A. Zaidi and K.K. Pant, Korean J. Chem. Eng., 22, 353 (2005).

    Article  CAS  Google Scholar 

  31. H. A. Zaidi and K. K. Pant, Ind. Eng. Chem. Res., 47, 2970 (2008).

    Article  CAS  Google Scholar 

  32. A. T. Aguayo, A. G. Gayubo, M. Castilla, J. Marandes, M. Olazar and J. Bilbao, Ind. Eng. Chem. Res., 40, 6087 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Akhtar Zaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaidi, H.A., Pant, K.K. Combined experimental and kinetic modeling studies for the conversion of gasoline range hydrocarbons from methanol over modified HZSM-5 catalyst. Korean J. Chem. Eng. 27, 1404–1411 (2010). https://doi.org/10.1007/s11814-010-0232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0232-5

Key words

Navigation