Skip to main content
Log in

Recent Progress in Oxidative Dehydrogenation of Alkane (C2C4) to Alkenes in a Fluidized Bed Reactor Under Mixed Metallic Oxide Catalyst

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Short-chain olefins are the important feedstock for the chemical industries. The selection of a proper catalyst for oxidative dehydrogenation (ODH) reaction is critical. Here, the study summarized different catalysts by physicochemical techniques such as BET surface area, Raman spectroscopy, and temperature programmed reduction (TPR). The BET analysis of different catalysts gives an optimum value of active and metal loading catalysts for optimum alkenes selectivity. From different Raman spectroscopy analyses, the study pointed out the factor responsible for varying mono vanadate and poly vanadate formation. From TPR analysis of different catalysts, this study pointed out the factors that varied on increasing or decreasing temperature and the effect on the selectivity of alkenes. The effect of different operating conditions was studied. Without catalyst regeneration after each ODH run, the catalyst under the study shows stable behavior and increases the selectivity of the desired product. The CREC riser simulator was used for ODH of propane and ethane, while two zones of fluidized bed reactor (TZFBR) and ICFBR reactors were used for ODH of butane. From the study of MoO3/MgO catalyst, it was observed that TZFBR have high selectivity of butadiene than CFBR and fixed bed reactor. It was concluded that the catalyst VOx–Nb/La-ɣAl2O3 has high conversion (20.1%) of ethane and good selectivity of (85.7%) of ethylene, while in ODH of propane and butane the catalyst 7.5 VOx/ɣAl2O3·ZrO2 (1:1) and MoO3/MgO have high selectivity of propane and 1,3-butadiene respectively. This review will help researchers in decision making for the selection of proper catalyst for ODH of alkane to alkenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ODH:

Oxidative dehydrogenation

TPR:

Temperature programmed reduction

TZFBR:

Two zones of fluidized bed reactor

MMO:

Mixed metallic oxide

FCC:

Fluidized catalytic cracking

BET:

Brunauer–Emmett–Teller

References

  1. C.W.S. Yeung, J.Y.Q. Teo, X.J. Loh, J.Y.C. Lim, Polyolefins and polystyrene as chemical resources for a sustainable future: challenges, advances, and prospects. ACS Mater. Lett. 3(12), 1660–1676 (2021). https://doi.org/10.1021/acsmaterialslett.1c00490

    Article  CAS  Google Scholar 

  2. S. Najari et al., Oxidative dehydrogenation of ethane: catalytic and mechanistic aspects and future trends. Chem. Soc. Rev. 50(7), 4564–4605 (2021). https://doi.org/10.1039/d0cs01518k

    Article  CAS  PubMed  Google Scholar 

  3. A.H. Assen et al., Kinetic separation of C4 olefins using Y-fum-fcu-MOF with ultra-fine-tuned aperture size. Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127388

    Article  Google Scholar 

  4. N. Tripathi, Q. Xu, S. Palanki, Modeling and simulation of the 1,3-butadiene extraction process at turndown capacity. Chem. Eng. Technol. 42(12), 2649–2657 (2019). https://doi.org/10.1002/ceat.201900019

    Article  CAS  Google Scholar 

  5. M. Bender, An overview of industrial processes for the production of olefins—C4 hydrocarbons. ChemBioEng Rev. 1(4), 136–147 (2014). https://doi.org/10.1002/cben.201400016

    Article  CAS  Google Scholar 

  6. J.H. Carter et al., Direct and oxidative dehydrogenation of propane: from catalyst design to industrial application. Green Chem. 23(24), 9747–9799 (2021). https://doi.org/10.1039/d1gc03700e

    Article  CAS  Google Scholar 

  7. M. Fakhroleslam, S.M. Sadrameli, Thermal cracking of hydrocarbons for the production of light olefins; A review on optimal process design, operation, and control. Ind. Eng. Chem. Res. 59(27), 12288–12303 (2020). https://doi.org/10.1021/acs.iecr.0c00923

    Article  CAS  Google Scholar 

  8. M. Fakhroleslam, S.M. Sadrameli, Thermal/catalytic cracking of hydrocarbons for the production of olefins; a state-of-the-art review III: process modeling and simulation. Fuel 252(April), 553–566 (2019). https://doi.org/10.1016/j.fuel.2019.04.127

    Article  CAS  Google Scholar 

  9. A.N. Matveyeva et al., Fluidized-bed isobutane dehydrogenation over alumina-supported Ga2O3 and Ga2O3–Cr2O3 catalysts. Ind. Eng. Chem. Res. 57(3), 927–938 (2018). https://doi.org/10.1021/acs.iecr.7b04571

    Article  CAS  Google Scholar 

  10. Z. Nawaz, Light alkane dehydrogenation to light olefin technologies: a comprehensive review. Rev. Chem. Eng. 31(5), 413–436 (2015). https://doi.org/10.1515/revce-2015-0012

    Article  CAS  Google Scholar 

  11. M. Mubashir, Y.F. Yeong, N.S. Binti Mohamed Nazri, K.K. Lau, Accelerated synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals via hydrothermal growth coupled with ultrasonic irradiation method. RSC Adv. 5(1–2), 22658–22664 (2015). https://doi.org/10.1039/C5RA00009B

    Article  CAS  Google Scholar 

  12. M. Munir et al., A practical approach for synthesis of biodiesel via non-edible seeds oils using trimetallic based montmorillonite nano-catalyst. Bioresour. Technol. 328, 124859 (2021). https://doi.org/10.1016/j.biortech.2021.124859

    Article  CAS  PubMed  Google Scholar 

  13. S. Wang, Z.H. Zhu, Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation—a review. Energy Fuels 18(4), 1126–1139 (2004). https://doi.org/10.1021/ef0340716

    Article  CAS  Google Scholar 

  14. H.G. Lintz, A. Reitzmann, Alternative reaction engineering concepts in partial oxidations on oxidic catalysts. Catal. Rev. Sci. Eng. 49(1), 1–32 (2007). https://doi.org/10.1080/01614940600983467

    Article  CAS  Google Scholar 

  15. F. Cavani, N. Ballarini, A. Cericola, Oxidative dehydrogenation of ethane and propane: how far from commercial implementation? Catal. Today 127(1–4), 113–131 (2007). https://doi.org/10.1016/J.CATTOD.2007.05.009

    Article  CAS  Google Scholar 

  16. C. De, A. Holmen, Z. Sui, X. Zhou, Carbon mediated catalysis: a review on oxidative dehydrogenation. Cuihua Xuebao 35(6), 824–841 (2014). https://doi.org/10.1016/s1872-2067(14)60120-0

    Article  Google Scholar 

  17. I.A. Bakare, S.A. Mohamed, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. De Lasa, Fluidized bed ODH of ethane to ethylene over VOx–MoOx/γ-Al2O3 catalyst: desorption kinetics and catalytic activity. Chem. Eng. J. 278, 207–216 (2015). https://doi.org/10.1016/j.cej.2014.09.114

    Article  CAS  Google Scholar 

  18. L.M. Madeira, M.F. Portela, Catalytic oxidative dehydrogenation of n-butane. Catal. Rev. 44(2), 247–286 (2002). https://doi.org/10.1081/CR-120001461

    Article  CAS  Google Scholar 

  19. F. Cavani, J.H. Teles, Sustainability in catalytic oxidation: an alternative approach or a structural evolution? Chemsuschem 2(6), 508–534 (2009). https://doi.org/10.1002/cssc.200900020

    Article  CAS  PubMed  Google Scholar 

  20. Y. Gambo et al., CO2-mediated oxidative dehydrogenation of light alkanes to olefins: advances and perspectives in catalyst design and process improvement. Appl. Catal. A (2021). https://doi.org/10.1016/j.apcata.2021.118273

    Article  Google Scholar 

  21. E.A. De Graaf, A. Andreini, E.J.M. Hensen, A. Bliek, Selective hydrogen oxidation in a mixture with ethane/ethene using cerium zirconium oxide. Appl. Catal. A 262(2), 201–206 (2004). https://doi.org/10.1016/j.apcata.2003.11.027

    Article  CAS  Google Scholar 

  22. J. Soler, C. Tellez, J. Herguido, M. Menendez, J. Santamarıa, Modelling of a two-zone fluidised bed reactor for the oxidative dehydrogenation of n-butane. Powder Technol. 120, 88–96 (2001)

    Article  CAS  Google Scholar 

  23. M.L. Rodríguez, D.E. Ardissone, E. López, M.N. Pedernera, D.O. Borio, Reactor designs for ethylene production via ethane oxidative dehydrogenation: comparison of performance. Ind. Eng. Chem. Res. 50(5), 2690–2697 (2011). https://doi.org/10.1021/ie100738q

    Article  CAS  Google Scholar 

  24. M.L. Rodriguez et al., Oxidative dehydrogenation of ethane to ethylene in a membrane reactor: a theoretical study. Catal. Today 157(1–4), 303–309 (2010). https://doi.org/10.1016/j.cattod.2010.01.053

    Article  CAS  Google Scholar 

  25. F. Dons̀, R. Pirone, G. Russo, Catalyst investigation for applications of oxidative dehydrogenation of ethane in short contact time reactors. Catal. Today 91–92, 285–288 (2004). https://doi.org/10.1016/j.cattod.2004.03.045

    Article  CAS  Google Scholar 

  26. A. Beretta, E. Ranzi, P. Forzatti, Oxidative dehydrogenation of light parafins in novel short contact time reactors. Experimental and theoretical investigation. Chem. Eng. Sci. 56, 779–787 (2001). https://doi.org/10.1016/S0009-2509(00)00289-X

    Article  CAS  Google Scholar 

  27. C. Hamel, T. Wolff, P. Subramaniam, A. Seidel-Morgenstern, Multicomponent dosing in membrane reactors including recycling-concept and demonstration for the oxidative dehydrogenation of propane. Ind. Eng. Chem. Res. 50(23), 12895–12903 (2011). https://doi.org/10.1021/ie2001692

    Article  CAS  Google Scholar 

  28. V.A. Vavilin, B. Fernandez, J. Palatsi, X. Flotats, Hydrolysis kinetics in anaerobic degradation of particulate organic material: an overview. Waste Manag. 28(6), 939–951 (2008). https://doi.org/10.1016/j.wasman.2007.03.028

    Article  CAS  PubMed  Google Scholar 

  29. M.P. Lobera, S. Valero, J.M. Serra, S. Escolástico, E. Argente, V. Botti, Optimization of ODHE membrane reactor based on mixed ionic electronic conductor using soft computing techniques. Chem. Eng. Sci. 66(24), 6308–6317 (2011). https://doi.org/10.1016/j.ces.2010.12.013

    Article  CAS  Google Scholar 

  30. D. Milne, T. Seodigeng, D. Glasser, D. Hildebrandt, B. Hausberger, The oxidative dehydrogenation of n-butane in a differential side-stream catalytic membrane reactor. Catal. Today 156(3–4), 237–245 (2010). https://doi.org/10.1016/j.cattod.2010.03.033

    Article  CAS  Google Scholar 

  31. M.E. Adrover, E. López, D.O. Borio, M.N. Pedernera, Simulation of a membrane reactor for the WGS reaction: pressure and thermal effects. Chem. Eng. J. 154(1–3), 196–202 (2009). https://doi.org/10.1016/j.cej.2009.04.057

    Article  CAS  Google Scholar 

  32. C. Hamel, Á. Tóta, F. Klose, E. Tsotsas, A. Seidel-Morgenstern, Analysis of single and multi-stage membrane reactors for the oxidation of short-chain alkanes—simulation study and pilot scale experiments. Chem. Eng. Res. Des. 86(7), 753–764 (2008). https://doi.org/10.1016/j.cherd.2008.03.025

    Article  CAS  Google Scholar 

  33. D. Milne, D. Glasser, D. Hildebrandt, B. Hausberger, The oxidative dehydrogenation of n-butane in a fixed-bed reactor and in an inert porous membrane reactor-maximizing the production of butenes and butadiene. Ind. Eng. Chem. Res. 45(8), 2661–2671 (2006). https://doi.org/10.1021/ie050120l

    Article  CAS  Google Scholar 

  34. D. Ahchieva, M. Peglow, S. Heinrich, L. Mörl, T. Wolff, F. Klose, Oxidative dehydrogenation of ethane in a fluidized bed membrane reactor. Appl. Catal. A 296(2), 176–185 (2005). https://doi.org/10.1016/j.apcata.2005.07.040

    Article  CAS  Google Scholar 

  35. A.A. Lemonidou, M. Machli, Oxidative dehydrogenation of propane over V2O5–MgO/TiO2 catalyst. Effect of reactants contact mode. Catal. Today 127(1–4), 132–138 (2007). https://doi.org/10.1016/j.cattod.2007.05.022

    Article  CAS  Google Scholar 

  36. N. Steinfeldt, N. Dropka, D. Wolf, M. Baerns, Application of multichannel microreactors for studying heterogeneous catalysed gas phase reactions. Chem. Eng. Res. Des. 81(7), 735–743 (2003). https://doi.org/10.1205/026387603322302904

    Article  CAS  Google Scholar 

  37. G. Eigenberger, W. Ruppel, Catalytic fixed-bed reactors. Ullmann’s Encycl. Ind. Chem. (2012). https://doi.org/10.1002/14356007.b04_199.pub2

    Article  Google Scholar 

  38. M.Y. Khan, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H. de Lasa, Fluidized bed oxidative dehydrogenation of ethane to ethylene over VOx/Ce-γAl2O3 catalysts: reduction kinetics and catalyst activity. Mol. Catal. 443, 78–91 (2017). https://doi.org/10.1016/j.mcat.2017.09.025

    Article  CAS  Google Scholar 

  39. X. Chen, D. Dang, H. An, B. Chu, Y. Cheng, MnOx promoted phase-pure M1 MoVNbTe oxide for ethane oxidative dehydrogenation. J. Taiwan Inst. Chem. Eng. 95, 103–111 (2019). https://doi.org/10.1016/j.jtice.2018.10.004

    Article  CAS  Google Scholar 

  40. A.A.H. Elbadawi, M.S. Ba-Shammakh, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. de Lasa, A fluidizable VOx/γ-Al2O3-ZrO2 catalyst for the ODH of ethane to ethylene operating in a gas phase oxygen free environment. Chem. Eng. Sci. 145, 59–70 (2016). https://doi.org/10.1016/j.ces.2016.01.050

    Article  CAS  Google Scholar 

  41. S. Boullosa-Eiras, E. Vanhaecke, T. Zhao, D. Chen, A. Holmen, Raman spectroscopy and X-ray diffraction study of the phase transformation of ZrO2–Al2O3 and CeO2–Al2O3 nanocomposites. Catal. Today 166(1), 10–17 (2011). https://doi.org/10.1016/j.cattod.2010.05.038

    Article  CAS  Google Scholar 

  42. M. Mubashir, Y.Y. Fong, L.K. Keong, M. Azmi Bin Sharrif, Synthesis and performance of deca-dodecasil 3 rhombohedral (DDR)-type zeolite membrane in CO2 separation—a review. ASEAN J. Chem. Eng. 14(2), 48–57 (2014). https://doi.org/10.22146/ajche.49708

    Article  Google Scholar 

  43. M. Mubashir, Y.F. Yeong, L.K. Keong, Methods comparison for the synthesis of deca-dodecasil 3 rhombohedral (DDR3) zeolite crystals. Appl. Mech. Mater. 773–774, 1096–1100 (2015). https://doi.org/10.4028/www.scientific.net/AMM.773-774.1096

    Article  Google Scholar 

  44. I.E. Wachs, Catalysis science of supported vanadium oxide catalysts. Dalton Trans. 42(33), 11762–11769 (2013). https://doi.org/10.1039/c3dt50692d

    Article  CAS  PubMed  Google Scholar 

  45. S. Sokolov, M. Stoyanova, U. Rodemerck, D. Linke, E.V. Kondratenko, Comparative study of propane dehydrogenation over V-, Cr-, and Pt-based catalysts: time on-stream behavior and origins of deactivation. J. Catal. 293, 67–75 (2012). https://doi.org/10.1016/j.jcat.2012.06.005

    Article  CAS  Google Scholar 

  46. I.E. Wachs, B.M. Weckhuysen, Structure and reactivity of surface vanadium oxide species on oxide supports. Appl. Catal. A 157(1–2), 67–90 (1997). https://doi.org/10.1016/S0926-860X(97)00021-5

    Article  CAS  Google Scholar 

  47. A.A.H. Elbadawi, M.S. Osman, S.A. Razzak, M.M. Hossain, VOx–Nb/La-γAl2O3 catalysts for oxidative dehydrogenation of ethane to ethylene. J. Taiwan Inst. Chem. Eng. 61, 106–116 (2016). https://doi.org/10.1016/j.jtice.2016.01.003

    Article  CAS  Google Scholar 

  48. E.T. Saw, U. Oemar, M.L. Ang, H. Kus, S. Kawi, High-temperature water gas shift reaction on Ni–Cu/CeO2 catalysts: effect of ceria nanocrystal size on carboxylate formation. Catal. Sci. Technol. 6(14), 5336–5349 (2016). https://doi.org/10.1039/c5cy01932j

    Article  CAS  Google Scholar 

  49. A. Barrera et al., Influence of the type of sepiolite on the modification of the pore-size distribution in γ-Al2O3 supports. Appl. Clay Sci. 42(3–4), 415–421 (2009). https://doi.org/10.1016/j.clay.2008.04.009

    Article  CAS  Google Scholar 

  50. T. Xing et al., Catalytic oxidative dehydrogenation of n-butane on gallium nitride-containing titanosilicate catalyst. Can. J. Chem. Eng. 97(12), 3115–3124 (2019). https://doi.org/10.1002/cjce.23585

    Article  CAS  Google Scholar 

  51. J. Rischard, C. Antinori, L. Maier, O. Deutschmann, Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor. Appl. Catal. A 511, 23–30 (2016). https://doi.org/10.1016/j.apcata.2015.11.026

    Article  CAS  Google Scholar 

  52. O. Rubio, J. Herguido, M. Menéndez, Oxidative dehydrogenation of n-butane on V/MgO catalysts-kinetic study in anaerobic conditions. Chem. Eng. Sci. 58(20), 4619–4627 (2003). https://doi.org/10.1016/j.ces.2003.07.004

    Article  CAS  Google Scholar 

  53. O. Rubio, J. Herguido, M. Menéndez, G. Grasa, J.C. Abanades, Oxidative dehydrogenation of butane in an interconnected fluidized-bed reactor. AIChE J. 50(7), 1510–1522 (2004). https://doi.org/10.1002/aic.10134

    Article  CAS  Google Scholar 

  54. M.L. Pacheco et al., MoO3/MgO as a catalyst in the oxidative dehydrogenation of n-butane in a two-zone fluidized bed reactor. Catal. Today 61, 101–107 (2000)

    Article  CAS  Google Scholar 

  55. X. Liu, L. Duan, W. Yang, X. Zhu, Oxidative dehydrogenation of n-butane to butenes on Mo-doped VMgO catalysts. RSC Adv. 7(54), 34131–34137 (2017). https://doi.org/10.1039/c7ra04936f

    Article  CAS  Google Scholar 

  56. B. Xu, X. Zhu, Z. Cao, L. Yang, W. Yang, Catalytic oxidative dehydrogenation of n-butane over V2O5/MO–Al2O3 (M = Mg, Ca, Sr, Ba) catalysts. Cuihua Xuebao 36(7), 1060–1067 (2015). https://doi.org/10.1016/S1872-2067(15)60839-7

    Article  CAS  Google Scholar 

  57. S. Rostom, H. De Lasa, High propylene selectivity via propane oxidative dehydrogenation using a novel fluidizable catalyst: kinetic modelling. Ind. Eng. Chem. Res. (2018). https://doi.org/10.1021/acs.iecr.8b01891

    Article  Google Scholar 

  58. M. Setnička, Z. Tišler, D. Kubička, R. Bulánek, Activity of molybdenum oxide catalyst supported on Al2O3, TiO2, and SiO2 matrix in the oxidative dehydrogenation of n-butane. Top. Catal. 58(14–17), 866–876 (2015). https://doi.org/10.1007/s11244-015-0453-2

    Article  CAS  Google Scholar 

  59. C. Carrero et al., High performance (VOx)n-(TiOx)m/SBA-15 catalysts for the oxidative dehydrogenation of propane. Catal. Sci. Technol. 4(3), 786–794 (2014). https://doi.org/10.1039/c3cy00625e

    Article  CAS  Google Scholar 

  60. S. Rostom, H.I. De Lasa, Propane oxidative dehydrogenation using consecutive feed injections and fluidizable VOx/γAl2O3 and VOx/ZrO2-γAl2O3 catalysts. Ind. Eng. Chem. Res. 56(45), 13109–13124 (2017). https://doi.org/10.1021/acs.iecr.7b01369

    Article  CAS  Google Scholar 

  61. A.A. Ayandiran, I.A. Bakare, H. Binous, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, Oxidative dehydrogenation of propane to propylene over VOx/CaO–γ-Al2O3 using lattice oxygen. Catal. Sci. Technol. 6(13), 5154–5167 (2016). https://doi.org/10.1039/C6CY00078A

    Article  CAS  Google Scholar 

  62. S. Rostom, H.I. de Lasa, Propane oxidative dehydrogenation using consecutive feed injections and fluidizable VOx/γAl2O3 and VOx/ZrO2-γAl2O3 catalysts. Ind. Eng. Chem. Res. (2017). https://doi.org/10.1021/acs.iecr.7b01369

    Article  Google Scholar 

  63. J. Herguido, M. Mene, J. Santamarı, Oxidative dehydrogenation of n-butane in a two-zone fluidized-bed reactor. Ind. Eng. Chem. Res. 38, 90–97 (1999)

    Article  Google Scholar 

  64. A.A.H. Elbadawi, M.S. Ba-Shammakh, S. Al-Ghamdi, S.A. Razzak, M.M. Hossain, H.I. de Lasa, Phenomenologically based kinetics of ODH of ethane to ethylene using lattice oxygen of VOx/Al2O3–ZrO2 catalyst. Chem. Eng. Res. Des. 117, 733–745 (2017). https://doi.org/10.1016/j.cherd.2016.11.015

    Article  CAS  Google Scholar 

  65. S. Al-Ghamdi, M. Volpe, M.M. Hossain, H. de Lasa, VOx/c-Al2O3 catalyst for oxidative dehydrogenation of ethane to ethylene: desorption kinetics and catalytic activity. Appl. Catal. A 450, 120–130 (2013). https://doi.org/10.1016/J.APCATA.2012.10.007

    Article  CAS  Google Scholar 

  66. J. Soler, J.M. López-Nieto, J. Herguido, M. Menéndez, J. Santamaría, Oxidative dehydrogenation of n-butane in a two-zone fluidized-bed reactor. Ind. Eng. Chem. Res. 38, 90–97 (1999)

    Article  CAS  Google Scholar 

  67. J. Rischard, C. Antinori, L. Maier, O. Deutschmann, Oxidative dehydrogenation of n-butane to butadiene with Mo-V-MgO catalysts in a two-zone fluidized bed reactor. Appl. Catal. A 511(March), 23–30 (2016). https://doi.org/10.1016/j.apcata.2015.11.026

    Article  CAS  Google Scholar 

  68. S.A. Al-ghamdi, H.I. De Lasa, Propylene production via propane oxidative dehydrogenation over VOx/c-Al2O3 catalyst. Fuel 128(April), 120–140 (2014). https://doi.org/10.1016/j.fuel.2014.02.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT- 2020050), Heilongjiang Institute of Technology Doctoral Research Fund (2017BJ31), Provincial Leading Talent Echelon Cultivation Project of Heilongjiang Institute of Technology (No. 2020LJ03). This work was also supported by the Fundamental Research Grant Scheme, Malaysia [FRGS/1/2019/STG05/UNIM/02/2] and MyPAIR-PHC-Hibiscus Grant [MyPAIR/1/2020/STG05/UNIM//1]. The authors would also like to acknowledge UCSI University Research and Innovation Grant [REIG-FAS-2020/028].

Funding

This study was funded by University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT- 2020050), Heilongjiang Institute of Technology Doctoral Research Fund (2017BJ31), Provincial Leading Talent Echelon Cultivation Project of Heilongjiang Institute of Technology (No. 2020LJ03), UCSI University Research and Innovation Grant [REIG-FAS-2020/028].

Author information

Authors and Affiliations

Authors

Contributions

ZU: Writing—original draft, Writing—review & editing, IK & MK: Conceptualization, Formal analysis, Data curation, Funding acquisition, Investigation, KSK: Supervision, Validation, Writing—review & editing, AJ & US: Data curation, Formal analysis, Funding acquisition, Investigation, Visualization, TM & MM: Conceptualization, Visualization, PET: Supervision, Validation, Writing—review & editing, PLS: Funding acquisition, Supervision, Validation.

Corresponding authors

Correspondence to Umair Sikandar, Kuan Shiong Khoo or Pau Loke Show.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, Z., Khan, M., Khan, I. et al. Recent Progress in Oxidative Dehydrogenation of Alkane (C2C4) to Alkenes in a Fluidized Bed Reactor Under Mixed Metallic Oxide Catalyst. J Inorg Organomet Polym 34, 1–13 (2024). https://doi.org/10.1007/s10904-022-02433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02433-7

Keywords

Navigation