Skip to main content
Log in

Improvement of the catalytic performance of immobilized penicillin acylase through assembly of macromolecular reagents in nanopore to create a crowding environment

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Macromolecular reagents were co-assembled with penicillin acylase (PA) and immobilized in mesocellular siliceous foams (MCFs) to resemble living cells. Types and concentrations of macromolecules were studied. The catalytic characteristic and stability of PA preparations were also investigated. PA assembled with dextran 10 k in MCFs showed maximum specific activity, 1.32-fold of that of the solely immobilized PA. The optimum pH of dextran and BSA derivatives shifted to neutrality, and the optimum temperature increased by 10 °C. Also, Km of BSA derivative of PA declined 56.7% compared to solely immobilized PA, while the Kcat/Km of PA assembled with BSA was enhanced to 147%. After incubation at 50 °C for 6 h, residual activity of PA assembled with BSA exhibited 53.0%. The ficoll derivative showed 82.8% of its initial activity at 4 °C after 8-week storage. The results indicated that macromolecular reagents assembled with PA in MCFs could dramatically improve the catalytic performance and stability of immobilized enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Chandel, L.V. Rao, M. L. Narasu and O.V. Singh, Enzyme. Microb. Technol., 42, 199 (2008).

    CAS  Google Scholar 

  2. R. A. Sheldon, Adv. Synth. Catal., 349, 1289 (2007).

    Article  CAS  Google Scholar 

  3. A. I. Kallenberg, F. Van Rantwijk and R. A. Sheldon, Adv. Synth. Catal., 347, 905 (2005).

    Article  CAS  Google Scholar 

  4. H.W. Wang, I. H. Kim, C. S. Park and J. H. Lee, Korean J. Chem. Eng., 25, 801 (2008).

    Article  CAS  Google Scholar 

  5. T. Montes, V. Grazu, I. Manso, B. Galan, F. Lopez-Gallego, R. Gonzalez, J. A. Hermoso, J. L. Garcia, J. M. Guisan and R. Fernandez-Lafuente, Adv. Synth. Catal., 349, 459 (2007).

    Article  CAS  Google Scholar 

  6. A. M. Wang, C. Zhou, H. Wang, S.B. Shen, J.Y. Xue and P.K. Ouyang, Chin. J. Chem. Eng., 15, 788 (2007).

    Article  CAS  Google Scholar 

  7. K. Park, H. Kim, S. Maken, Y. Kim, B. Min and J. Park, Korean J. Chem. Eng., 22, 412 (2005).

    Article  CAS  Google Scholar 

  8. J. L. Van Roon, C.G. P. H. Schroen, J. Tramper and H. H. Beeftink, Biotechnol. Adv., 25, 137 (2007).

    Article  Google Scholar 

  9. A. P. Minton, J. Cell. Sci., 119, 2863 (2006).

    Article  CAS  Google Scholar 

  10. H. X. Zhou, G. Rivas and A. P. Minton, Annu. Rev. Biophys., 37, 375 (2008).

    Article  CAS  Google Scholar 

  11. R. J. Ellis, Trends Biochem. Sci., 26, 597 (2001).

    Article  CAS  Google Scholar 

  12. D. Kazan and A. Erarslan, J. Chem. Technol. Biotechnol., 74, 1157 (1999).

    Article  CAS  Google Scholar 

  13. D. Mislovicov, M. Jane, M. Bucko and P. Gemeiner, Enzyme. Microb. Technol., 39, 579 (2006).

    Article  Google Scholar 

  14. P. Schmidt-Winkel, W.W. Lukens, D. Y. Zhao, P. D. Yang, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 121, 254 (1999).

    Article  CAS  Google Scholar 

  15. A. M. Wang, H. Wang, S. M. Zhu, C. Zhou, Z. Q. Du and S. B. Shen, Bioprocess. Biosyst. Eng., 31, 509 (2008).

    Article  CAS  Google Scholar 

  16. A. M. Wang, M. Q. Liu, H. Wang, C. Zhou, Z.Q. Du, S. M. Zhu and S. B. Shen, J. Biosci. Bioeng., 106, In press (2008).

  17. H. Kim, J. C. Jung, S. H. Yeom, K. Y. Lee, J. Yi and I. K. Song, Mater. Res. Bull., 42, 2132 (2007).

    Article  CAS  Google Scholar 

  18. M. M. A. Brandford, Anal. Biochem., 72, 248 (1976).

    Article  Google Scholar 

  19. J.G. Shewale, K.K. Kumar and G. R. Ambekar, Biotechnol. Technique., 1, 69 (1987).

    Article  CAS  Google Scholar 

  20. M. S. Cheung and D. Thirumalai, J. Mol. Biol., 357, 632 (2006).

    Article  CAS  Google Scholar 

  21. H. X. Zhou and A. D. Ken, Biochem., 40, 11289 (2001).

    Article  CAS  Google Scholar 

  22. A. P. Minton, Curr. Opin. Struct. Biol., 10, 34 (2000).

    Article  CAS  Google Scholar 

  23. R. J. Ellis, Curr. Opin. Struct. Biol., 11, 114 (2001).

    Article  CAS  Google Scholar 

  24. D. E. Koshland, Bioorg. Chem., 30, 211 (2002).

    Article  CAS  Google Scholar 

  25. M. Jiang and Z. H. Guo, J. Am. Chem. Soc., 129, 730 (2007).

    Article  CAS  Google Scholar 

  26. A. P. Minton, J. Biol. Chem., 276, 10577 (2001).

    Article  CAS  Google Scholar 

  27. S. M. S. A. Bernardino, J. F. M. Gallegos, A. Santhagunam, D. P. C. Barros, P. Fernandes and L. P. Fonseca, J. Biotechnol., 131, S97 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubao Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Wang, A., Du, Z. et al. Improvement of the catalytic performance of immobilized penicillin acylase through assembly of macromolecular reagents in nanopore to create a crowding environment. Korean J. Chem. Eng. 26, 1065–1069 (2009). https://doi.org/10.1007/s11814-009-0177-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0177-8

Key words

Navigation