Skip to main content
Log in

Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel integrated nanobiocatalyst system based on an enzyme@silica nanoflower@metal-organic framework (enzyme@SNF@ZIF-8) structure with improved stability is fabricated for the first time. The versatility of this system is validated using penicillin G acylase (PGA) and catalase (CAT) as model enzymes. The microporous ZIF-8 layer can be controlled by varying the number of ZIF-8 coating cycles, which produces PGA@SNF@ZIF-8 nanobiocatalysts with different ZIF-8 layer thicknesses. After the second ZIF-8 coating cycle, a PGA@SNF@ZIF-8(2) structure with a homogeneous and well-intergrown ZIF-8 layer is formed, which possesses excellent mechanical and chemical stability. Moreover, PGA@SNF@ZIF-8(2) shows improved thermal/storage stability and reusability compared with free PGA and PGA immobilized on silica nanoflowers (PGA@SNF). The obtained CAT-based nanobiocatalysts (CAT@SNF@ZIF-8(2)) also show excellent catalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schmid, A.; Dordick, J. S.; Hauer, B.; Kiener, A.; Wubbolts, M.; Witholt, B. Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268.

    Article  Google Scholar 

  2. Ariga, K.; Ji, Q. M.; Mori, T.; Naito, M.; Yamauchi, Y.; Abe, H.; Hill, J. P. Enzyme nanoarchitectonics: Organization and device application. Chem. Soc. Rev. 2013, 42, 6322–6345.

    Article  Google Scholar 

  3. Adlercreutz, P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013, 42, 6406–6436.

    Article  Google Scholar 

  4. Garcia-Galan, C.; Berenguer-Murcia, Á.; Fernandez- Lafuente, R.; Rodrigues, R. C. Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 2011, 353, 2885–2904.

    Article  Google Scholar 

  5. Liu, J. L.; Fu, Y.; Fu, X. B.; Li, Y. X.; Liang, D. K.; Song, Y.; Pan, C. Y.; Yu, G. P.; Xiao, X. X. Nanoscale porous triazine-based frameworks with cyanate ester linkages for efficient drug delivery. RSC Adv. 2016, 6, 20834–20842.

    Article  Google Scholar 

  6. Barbosa, O.; Ortiz, C.; Berenguer-Murcia, Á.; Torres, R.; Rodrigues, R. C.; Fernandez-Lafuente, R. Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 2015, 33, 435–456.

    Article  Google Scholar 

  7. Mateo, C.; Palomo, J. M.; Fernandez-Lorente, G.; Guisan, J. M.; Fernandez-Lafuente, R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007, 40, 1451–1463.

    Article  Google Scholar 

  8. Rodrigues, R. C.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 2013, 42, 6290–6307.

    Article  Google Scholar 

  9. Fernandez-Lafuente, R. Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb. Technol. 2009, 45, 405–418.

    Article  Google Scholar 

  10. Hernandez, K.; Fernandez-Lafuente, R. Control of protein immobilization: Coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb. Technol. 2011, 48, 107–122.

    Article  Google Scholar 

  11. Li, X. M.; Zhou, L.; Wei, Y.; El-Toni, A. M.; Zhang, F.; Zhao, D. Y. Anisotropic growth-induced synthesis of dualcompartment Janus mesoporous silica nanoparticles for bimodal triggered drugs delivery. J. Am. Chem. Soc. 2014, 136, 15086–15092.

    Article  Google Scholar 

  12. Polshettiwar, V.; Cha, D.; Zhang, X. X.; Basset, J. M. High-surface-area silica nanospheres (kcc-1) with a fibrous morphology. Angew. Chem. 2010, 122, 9846–9850.

    Article  Google Scholar 

  13. Chen, Z. W.; Zhao, C. Q.; Ju, E. G.; Ji, H. W.; Ren, J. S.; Binks, B. P.; Qu, X. G. Design of surface-active artificial enzyme particles to stabilize pickering emulsions for highperformance biphasic biocatalysis. Adv. Mater. 2016, 28, 1682–1688.

    Article  Google Scholar 

  14. Lin, Y. H.; Li, Z. H.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials 2013, 34, 2600–2610.

    Article  Google Scholar 

  15. Gao, J.; Kong, W. X.; Zhou, L. Y.; He, Y.; Ma, L.; Wang, Y.; Yin, L. Y.; Jiang, Y. J. Monodisperse core-shell magnetic organosilica nanoflowers with radial wrinkle for lipase immobilization. Chem. Eng. J. 2017, 309, 70–79.

    Article  Google Scholar 

  16. Liu, L. Z.; Yu, W.; Luo, D.; Xue, Z. J.; Qin, X. Y.; Sun, X. H.; Zhao, J. C.; Wang, J. L.; Wang, T. Catalase nanocapsules protected by polymer shells for scavenging free radicals of tobacco smoke. Adv. Funct. Mater. 2015, 25, 5159–5165.

    Article  Google Scholar 

  17. Romero, O.; Guisán, J. M.; Illanes, A.; Wilson, L. Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme-support attachment and enzyme load. J. Mol. Catal. B: Enzym. 2012, 74, 224–229.

    Article  Google Scholar 

  18. Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

    Article  Google Scholar 

  19. Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

    Article  Google Scholar 

  20. Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Mahy, J.-P.; Steunou, N.; Serre, C. Metal-organic frameworks: A novel host platform for enzymatic catalysis and detection. Mater. Horiz. 2017, 4, 55–63.

    Article  Google Scholar 

  21. Wang, S. H.; Fan, Y.; Jia, X. Q. Sodium dodecyl sulfateassisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline. Chem. Eng. J. 2014, 256, 14–22.

    Article  Google Scholar 

  22. Cheng, H. J.; Zhang, L.; He, J.; Guo, W. J.; Zhou, Z. Y.; Zhang, X. J.; Nie, S. M.; Wei, H. Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Anal. Chem. 2016, 88, 5489–5497.

    Article  Google Scholar 

  23. Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566.

    Article  Google Scholar 

  24. Wang, Q. Q.; Zhang, X. P.; Huang, L.; Zhang, Z. Q.; Dong, S. J. GOx@ZIF-8(NiPd) nanoflower: An artificial enzyme system for tandem catalysis. Angew. Chem., Int. Ed. 2017, 56, 16082–16085.

    Article  Google Scholar 

  25. Liang, K.; Ricco, R.; Doherty, C. M.; Styles, M. J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A. J.; Doonan, C. J. et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240.

    Article  Google Scholar 

  26. Raja, D. S.; Liu, W.-L.; Huang, H.-Y.; Lin, C.-H. Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem. 2015, 35, 331–349.

    Article  Google Scholar 

  27. Wu, X. L.; Ge, J.; Yang, C.; Hou, M.; Liu, Z. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment. Chem. Commun. 2015, 51, 13408–13411.

    Article  Google Scholar 

  28. Lyu, F. J.; Zhang, Y. F.; Zare, R. N.; Ge, J.; Liu, Z. One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities. Nano Lett. 2014, 14, 5761–5765.

    Article  Google Scholar 

  29. Avci, C.; Ariñez-Soriano, J.; Carné-Sánchez, A.; Guillerm, V.; Carbonell, C.; Imaz, I.; Maspoch, D. Post-synthetic anisotropic wet-chemical etching of colloidal sodalite ZIF crystals. Angew. Chem., Int. Ed. 2015, 127, 14625–14629.

    Article  Google Scholar 

  30. Wang, C. Z.; Tadepalli, S.; Luan, J. Y.; Liu, K.-K.; Morrissey, J. J.; Kharasch, E. D.; Naik, R. R.; Singamaneni, S. Metal-organic framework as a protective coating for biodiagnostic chips. Adv. Mater. 2017, 29, 1604433.

    Article  Google Scholar 

  31. Xue, P.; Xu, F.; Xu, L. D. Epoxy-functionalized mesostructured cellular foams as effective support for covalent immobilization of penicillin G acylase. Appl. Surf. Sci. 2008, 255, 1625–1630.

    Article  Google Scholar 

  32. Xi, B. J.; Tan, Y. C.; Zeng, H. C. A general synthetic approach for integrated nanocatalysts of metal-silica@ZIFs. Chem. Mater. 2016, 28, 326–336.

    Article  Google Scholar 

  33. Lee, H. J.; Cho, W.; Oh, M. Advanced fabrication of metal-organic frameworks: Template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. Chem. Commun. 2012, 48, 221–223.

    Article  Google Scholar 

  34. Huang, G.; Yin, D. M.; Wang, L. M. A general strategy for coating metal-organic frameworks on diverse components and architectures. J. Mater. Chem. A 2016, 4, 15106–15116.

    Article  Google Scholar 

  35. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organicframework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  Google Scholar 

  36. Li, S. B.; Dharmarwardana, M.; Welch, R. P.; Ren, Y. X.; Thompson, C. M.; Smaldone, R. A.; Gassensmith, J. J. Template-directed synthesis of porous and protective core-shell bionanoparticles. Angew. Chem. 2016, 128, 10849–10854.

    Article  Google Scholar 

  37. Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun. 2012, 48, 9388–9390.

    Article  Google Scholar 

  38. Arrua, R. D.; Peristyy, A.; Nesterenko, P. N.; Das, A.; D’Alessandro, D. M.; Hilder, E. F. UIO-66@SiO2 core-shell microparticles as stationary phases for the separation of small organic molecules. Analyst 2017, 142, 517–524.

    Article  Google Scholar 

  39. Yu, D. B.; Wu, B.; Ran, J.; Ge, L.; Wu, L.; Wang, H. T.; Xu, T. W. An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage. J. Mater. Chem. A 2016, 4, 16953–16960.

    Article  Google Scholar 

  40. Feng, Q.; Hou, D. Y.; Zhao, Y.; Xu, T.; Menkhaus, T. J.; Fong, H. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization. ACS Appl. Mater. Interfaces 2014, 6, 20958–20967.

    Article  Google Scholar 

  41. Koohshekan, B.; Divsalar, A.; Saiedifar, M.; Saboury, A. A.; Ghalandari, B.; Gholamian, A.; Seyedarabi, A. Protective effects of aspirin on the function of bovine liver catalase: A spectroscopy and molecular docking study. J. Mol. Liq. 2016, 218, 8–15.

    Article  Google Scholar 

  42. Mohy Eldin, M. S.; El Enshasy, H. A.; Hassan, M. E.; Haroun, B.; Hassan, E. A. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. J. Appl. Polym. Sci. 2012, 125, 3820–3828.

    Google Scholar 

  43. Fernandez-Lafuente, R.; Rosell, C. M.; Rodriguez, V.; Guisan, J. M. Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme Microb. Technol. 1995, 17, 517–523.

    Article  Google Scholar 

  44. Balcão, V. M.; Mateo, C.; Fernández-Lafuente, R.; Malcata, F. X.; Guisán, J. M. Structural and functional stabilization of l-asparaginase via multisubunit immobilization onto highly activated supports. Biotechnol. Prog. 2001, 17, 537–542.

    Article  Google Scholar 

  45. Correro, M. R.; Moridi, N.; Schützinger, H.; Sykora, S.; Ammann, E. M.; Peters, E. H.; Dudal, Y.; Corvini, P. F. X.; Shahgaldian, P. Enzyme shielding in an enzyme-thin and soft organosilica layer. Angew. Chem. 2016, 128, 6393–6397.

    Article  Google Scholar 

  46. Parui, S.; Manna, R. N.; Jana, B. Destabilization of hydrophobic core of chicken villin headpiece in guanidinium chloride induced denaturation: Hint of p-cation interaction. J. Phys. Chem. B 2016, 120, 9599–9607.

    Article  Google Scholar 

  47. Ganguly, P.; van der Vegt, N. F. A.; Shea, J.-E. Hydrophobic association in mixed urea-TMAO solutions. J. Phys. Chem. Lett. 2016, 7, 3052–3059.

    Article  Google Scholar 

  48. van’t Hag, L.; Gras, S. L.; Conn, C. E.; Drummond, C. J. Lyotropic liquid crystal engineering moving beyond binary compositional space-ordered nanostructured amphiphile self-assembly materials by design. Chem. Soc. Rev. 2017, 46, 2705–2731.

    Article  Google Scholar 

  49. Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

    Article  Google Scholar 

  50. Bayne, L.; Ulijn, R. V.; Halling, P. J. Effect of pore size on the performance of immobilised enzymes. Chem. Soc. Rev. 2013, 42, 9000–9010.

    Article  Google Scholar 

  51. Du, Y. J.; Gao, J.; Zhou, L. Y.; Ma, L.; He, Y.; Huang, Z. H.; Jiang, Y. J. Enzyme nanocapsules armored by metal-organic frameworks: A novel approach for preparing nanobiocatalyst. Chem. Eng. J. 2017, 327, 1192–1197.

    Article  Google Scholar 

  52. Hou, C.; Wang, Y.; Ding, Q. H.; Jiang, L.; Li, M.; Zhu, W. W.; Pan, D.; Zhu, H.; Liu, M. Z. Facile synthesis of enzymeembedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: Mimetic peroxidase properties and colorimetric sensor. Nanoscale 2015, 7, 18770–18779.

    Article  Google Scholar 

  53. Shi, J. F.; Tian, Y.; Liu, H.; Yang, D.; Zhang, S. H.; Wu, Y. Z.; Jiang, Z. Y. Shielding of enzyme by a stable and protective organosilica layer on monolithic scaffolds for continuous bioconversion. Ind. Eng. Chem. Res. 2017, 56, 10615–10622.

    Article  Google Scholar 

  54. Shieh, F.-K.; Wang, S.-C.; Yen, C.-I.; Wu, C.-C.; Dutta, S.; Chou, L.-Y.; Morabito, J. V.; Hu, P.; Hsu, M.-H.; Wu, K. C. W. et al. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: Size-selective sheltering of catalase in metal-organic framework microcrystals. J. Am. Chem. Soc. 2015, 137, 4276–4279.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21576068, 21276060, and 21276062), the Natural Science Foundation of Tianjin City (No. 16JCYBJC19800), the Natural Science Foundation of Hebei Province (Nos. B2015202082, B2016202027, and B2017202056), the Program for Top 100 Innovative Talents in Colleges and Universities of Hebei Province (No. SLRC2017029), Hebei High Level Personnel of Support Program (No. A2016002027), and the Graduate Innovation Support Program in Hebei Province (No. CXZZSS2017024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Jiang.

Electronic supplementary material

12274_2018_2027_MOESM1_ESM.pdf

Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Gao, J., Liu, H. et al. Enzyme@silica nanoflower@metal-organic framework hybrids: A novel type of integrated nanobiocatalysts with improved stability. Nano Res. 11, 4380–4389 (2018). https://doi.org/10.1007/s12274-018-2027-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2027-7

Keywords

Navigation