Skip to main content
Log in

Effects of silyl concentration, hydrogen concentration, ion flux, and silyl surface diffusion length on microcrystalline silicon film growth

  • Materials (Organic, Inorganic, Electronic, Thin Films), Polymer, Fluidization, Particle Technology
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Two sets of µc-Si: H films as a function of pressure were fabricated by very-high-frequency plasma enhanced chemical vapor deposition (VHF-PECVD). Deposition rate, Raman crystallinity, and photo/dark conductivity were investigated under both low and high power conditions. A plasma fluid model and a surface hydride-dependent precursor diffusion model were constructed to understand the evolution of microcrystalline silicon under low and high power conditions. Silyl, hydrogen, ion flux, silyl surface diffusion length are believed to have much influence on film growth rate, crystallinity and photo electronic properties. But the interesting point is that under a certain condition one or more of these parameters dominate µc-Si: H growth, while other parameters have weak influence. Short-life radicals are found to be the possible major factor on the deterioration of photo sensitivity of µc-Si: H films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Matsuda, M. Takai, T. Nishimoto and M. Kondo, Sol. Energy Mater. Sol. Cells, 78, 3 (2003).

    Article  CAS  Google Scholar 

  2. M. Takai, T. Nishimoto, M. Kondo and A. Matsuda, Appl. Phys. Lett., 77, 2828 (2000).

    Article  CAS  Google Scholar 

  3. S.K. Kim, E.C. Stassinos and H.H. Lee, Korean J. Chem. Eng., 11, 67 (1994).

    Article  CAS  Google Scholar 

  4. D.H. Kim, I.-J. Lee, S.W. Rhee and S.H. Moon, Korean J. Chem. Eng., 12, 572 (1995).

    Article  CAS  Google Scholar 

  5. K. Bera, B. Farouk and Y.H. Lee, J. Electrochem. Soc., 146, 3264 (1999).

    Article  CAS  Google Scholar 

  6. D. J. Dagel, C. M. Mallouris and J.R. Doyle, J. Appl. Phys., 79, 8735 (1996).

    Article  CAS  Google Scholar 

  7. K. Tachibana, M. Nishida, H. Harima and Y. Urano, J. Phys. D: Appl. Phys., 17, 1727 (1984).

    Article  CAS  Google Scholar 

  8. D. Herrebout, A. Bogaerts, M. Yan, R. Gijbels, et al., J. Appl. Phys., 90, 570 (2001).

    Article  CAS  Google Scholar 

  9. D. Herrebout, A. Bogaerts, R. Gijbels, et al., IEEE Trans. Plasma Sci., 31, 659 (2003).

    Article  CAS  Google Scholar 

  10. A. Gupta, Doctor Thesis, 11, (2001).

  11. H. Yong, C. Wu, J. Huang, et al., Thin Solid Film, 472, 125 (2005).

    Article  Google Scholar 

  12. Y. B. Hahn and S. J. Pearton, Korean J. Chem. Eng., 17, 304 (2000).

    Article  CAS  Google Scholar 

  13. C. A. Faúndez, L. E. Tamblay and J. O. Valderrama, Korean J. Chem. Eng., 21, 1199 (2004).

    Article  Google Scholar 

  14. D. J. Kim, P. J. Lyoo and K. S. Kim, Korean J. Chem. Eng., 20, 392 (2003).

    Article  CAS  Google Scholar 

  15. D. J. Kim, J. Y. Kang, A. Nasonova, K. S. Kim and S. J. Choi, Korean J. Chem. Eng., 24, 154 (2007).

    Article  CAS  Google Scholar 

  16. G. J. Nienhuis, W. J. Goedheer, E.A.G. Hamers, et al., J. Appl. Phys., 82, 2060 (1997).

    Article  CAS  Google Scholar 

  17. M. Kurachi and Y. Nakamura, J. Phys. D, 22, 107 (1989).

    Article  CAS  Google Scholar 

  18. J. Perrin, J. P.M. Schmitt, G. De Rosny, et al., Chem. Phys., 73, 383 (1982).

    Article  CAS  Google Scholar 

  19. E. Krishnakumar and S.K. Srivastava, Contrib. Plasma Phys., 35, 395 (1995).

    Article  CAS  Google Scholar 

  20. P. Haaland, J. Chem. Phys., 93, 4066 (1990).

    Article  CAS  Google Scholar 

  21. H. Tawara and T. Kato, At. Data Nucl. Data Tables, 36, 167 (1987).

    Article  CAS  Google Scholar 

  22. A.G. Engelhardt and A.V. Phelps, Phys. Rev., 131, 2115 (1963).

    Article  CAS  Google Scholar 

  23. J. Perrin, O. Leroy and M.C. Bordage, Contrib. Plasma Phys., 36, 3 (1996).

    Article  CAS  Google Scholar 

  24. A. P. Hickman, J. Chem. Phys., 70, 4872 (1979).

    Article  CAS  Google Scholar 

  25. G. Ganguly and A. Matsuda, Phys. Rev. B, 47, 3661 (1993).

    Article  CAS  Google Scholar 

  26. A. Matsuda, Thin Solid Films, 337, 1 (1999).

    Article  CAS  Google Scholar 

  27. J. L. Guizot, K. Nomoto and A. Matsuda, Surface Science, 244, 22 (1991).

    Article  CAS  Google Scholar 

  28. K. Maeda, A. Kuroe and I. Umezu, Phys. Rev. B, 51, 10635 (1995).

  29. J. E. Gerbi and J. R. Abelson, J. Appl. Phys., 89, 1463 (2001).

    Article  CAS  Google Scholar 

  30. A. Gallagher, J. Appl. Phys., 60, 1369 (1986).

    Article  CAS  Google Scholar 

  31. J. Perrin, J. Non-cryst. Solids, 137, 639 (1991).

    Article  Google Scholar 

  32. G. Ganguly and A. Matsuda, J. Non-cryst. Solids, 166, 31 (1993).

    Article  Google Scholar 

  33. K. R. Bray and G.N. Parsons, Phys. Rev. B, 65, 035311 (2001).

    Google Scholar 

  34. A. Gupta and G.N. Parsons, J. Vac. Sci. Technol. B, 18, 1764 (2000).

    Article  CAS  Google Scholar 

  35. J. Robertson, J. Appl. Phys., 87, 2608 (2000).

    Article  CAS  Google Scholar 

  36. W.M.M. Kessels, A.H.M. Smets, D. C. Marra, et al., Thin Solid Films, 383, 154 (2001).

    Article  CAS  Google Scholar 

  37. D. J. Doren, Advances in chemical physics, John Wiley & Sons Inc, New York (1996).

    Book  Google Scholar 

  38. M. Heintze, R. Zedlitz and G.H. Bauer, J. Phys. D: Appl. Phys., 26, 1781 (1993).

    Article  CAS  Google Scholar 

  39. M. Heintze and R. Zedlitz, J. of Non-cryst. Solids, 198–200, 1038 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxiao Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, S., Zhang, L., Lu, J. et al. Effects of silyl concentration, hydrogen concentration, ion flux, and silyl surface diffusion length on microcrystalline silicon film growth. Korean J. Chem. Eng. 25, 1539–1545 (2008). https://doi.org/10.1007/s11814-008-0253-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-008-0253-5

Key words

Navigation